Soal dan Pembahasan Matematika IPA SBMPTN 2018 (Kode 418)
- (A) -4
- (B) -2
- (C) 2
- (D) 4
- (E) 8
Substitusi nilai b = 4 ke persamaan (i)
\(\begin{array}{c}\,a + b = {\rm{ }}6\\\,a + {\rm{ }}4{\rm{ }} = {\rm{ }}6\\\,\,a = {\rm{ }}2\end{array}\)
Oleh karena itu, diperoleh g(x) = 4 sinx + 8.
Maka nilai minimum g(x) = 4 sinx + 8. terjadi saat sin x = -1 diperoleh
g(x) minimumnya = 4 (-1) + 8 = 4
Kunci Jawaban: D
- (A) (-2, 4)
- (B) (-1, 2)
- (C) (1, -2)
- (D) (2, -4)
- (E) (3, -6)
Diketahui titik P(a,b) dicerminkan terhadap sumbu x
\({{\rm{Pencerminan terhadap sumbu x : }}\left( {\begin{array}{*{20}{c}}{x'}\\{y'}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}x\\y\end{array}} \right)}\)
Selanjutnya titik P (a,b) digeser sejauh 5 satuan ke bawah dan 1 satuan ke kiri artinya,
\(\begin{array}{c}P' = \left( {\begin{array}{*{20}{c}}a\\{ - b}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 5}\end{array}} \right)\\\,\, = \left( {\begin{array}{*{20}{c}}a&{ - 1}\\{ - b}&{ - 5}\end{array}} \right)\end{array}\)
Karena titik P(a,b) mempunyai gradient -2 dan titik P’(a-1, -b-5) mempunyai gradient -1, maka \(\begin{array}{l}\,\,\,m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\\\, - 2 = \frac{{b - 0}}{{a - 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 1 = \frac{{ - b - 5 - 0}}{{a - 1 - 0}}\\\,\, - 2a = b\,\,....\,\left( i \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 - a = - b - 5\,\,\,...\left( {ii} \right)\end{array}\) Substitusi persamaan (i) ke (ii)
\(\begin{array}{c}1 - a = - b - 5\\\,1 - a = - \left( { - 2a} \right) - 5\\\,\,1 - a = 2a - 5\\\,\,\, - 3a = - 6\\\,\,\,a = 2\end{array}\) Substitusi nilai a = 2 ke persamaan (i)
\(\begin{array}{c}\,b = - 2a\\\,\, = - 2\left( 2 \right)\\\, = - 4\end{array}\)
Kunci Jawaban: D
- (A) \(\sqrt {15} \)
- (B) 4
- (C) \(\sqrt {17} \)
- (D) \(3\sqrt 2 \)
- (E) \(\sqrt {19} \)
\(\begin{array}{l}PQ = \sqrt {P{B^2} + Q{B^2}} \\\, = \sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} \\ = \sqrt {2 + 2} = 2\\ \Rightarrow \,\,PQ = 2\end{array}\)
Titik O berada ditengah garis PQ, maka QO = 1.
Perhatikan segitiga sama kaki PBQ.
\(\begin{array}{l}\,BO = \sqrt {Q{B^2} + Q{O^2}} \\\, = \sqrt {{{\left( {\sqrt 2 } \right)}^2} + {1^2}} \\\,\, = \sqrt {2 - 1} \,\, = 1.\\ \Rightarrow BO = 1\end{array}\)
\(\begin{array}{l}HO = \sqrt {H{D^2} + D{O^2}} \\\,\, = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {3^2}} \\\,\, = \sqrt {8 + 9} \,\,\, = \sqrt {17} .\\ \Rightarrow HO = \sqrt {17} .\end{array}\)
Jadi, jarak titik H ke garis PQ adalah \(\sqrt {17} \)
Kunci Jawaban: C
- (A) 8
- (B) 12
- (C) 16
- (D) 20
- (E) 24
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 9}}{{\sqrt {x + 1} - \sqrt {7 - x} }} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 9}}{{\sqrt {x + 1} - \sqrt {7 - x} }} \times \frac{{\sqrt {x + 1} + \sqrt {7 - x} }}{{\sqrt {x + 1} + \sqrt {7 - x} }}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{x^2} - 9} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{{{{\left( {\sqrt {x + 1} } \right)}^2} - {{\left( {\sqrt {7 - x} } \right)}^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{x^2} - 9} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{{\left( {x + 1} \right) - \left( {7 - x} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{x^2} - 9} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{{x + 1 - 7 + x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{x^2} - 9} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{{2x - 6}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{{2\left( {x - 3} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {x + 3} \right)\left( {\sqrt {x + 1} + \sqrt {7 - x} } \right)}}{2}\\ = \frac{{\left( {3 + 3} \right)\left( {\sqrt {3 + 1} + \sqrt {7 - 3} } \right)}}{2} = 12.\end{array}\)
Jadi, \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 9}}{{\sqrt {x = 1} - \sqrt {7 - x} }} = 12\)
- (A) 2
- (B) 4
- (C) 6
- (D) 7
- (E) 9
Diketahui \({u_1} = a + {\rm{ }}1,{u_2} = a - 3\) dan \({u_3} = {\rm{ }}2\).
Perhatikan,
\(\begin{array}{l}\frac{{{u_2}}}{{{u_1}}} = \frac{{{u_3}}}{{{u_2}}}\,\,\, \Rightarrow \,\,\,\frac{{a - 3}}{{a + 1}} = \frac{2}{{a - 3}}\\(a - 3)(a - 3){\rm{ }} = {\rm{ }}2(a + {\rm{ }}1)\\\,\,{a^2} - 6a + {\rm{ }}9{\rm{ }} = {\rm{ }}2a + {\rm{ }}2\\\,\,{a^2} - 8a + {\rm{ }}7{\rm{ }} = {\rm{ }}0\\\,(a - 7)(a - 1){\rm{ }} = {\rm{ }}0\end{array}\)
a = 1 atau a = 7
👀 untuk a = 1
\(\,{u_1} = a + {\rm{ }}1{\rm{ }} = {\rm{ }}2\) (suku awal)
\(\begin{array}{l}\,{u_2} = a - 3{\rm{ }} = - 2\\\,r = \frac{{{u_2}}}{{{u_1}}} = - 1\end{array}\)
Jumlah n suku pertama:
\(\begin{array}{l}{S_n} = \frac{{a({r^n} - 1)}}{{r - 1}} = \frac{{2\left( {{{( - 1)}^{11}} - 1} \right)}}{{ - 1 - 1}}\\\,\,\,\,\,\,\, = \frac{{2( - 2)}}{{ - 2}} = 2\end{array}\)
👀 untuk a = 7, tidak ada pilihan
Kunci Jawaban: A
- (A) \(\frac{{8\pi }}{3}\)
- (B) \(\frac{{16\pi }}{3}\)
- (C) \(\frac{{24\pi }}{3}\)
- (D) \(\frac{{32\pi }}{3}\)
- (E) \(\frac{{40\pi }}{3}\)
Perhatikan gambar di atas. Titik potongnya diperoleh dengansubstitusi:
\(\begin{array}{c}\,\,{{\rm{y}}_1} = {y_2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sqrt x = - x + 6\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = {x^2} - 12x + 36\\{x^2} - 13x + 36 = 0\\\left( {x - 9} \right)\left( {x - 4} \right) = 0\\\,\,\,x = 4\,\,{\rm{atau x = 9}}\end{array}\)
Titik potong garis y = -x + 6 terhadap sumbu x, artinya y = 0
\(\begin{array}{l}y = - x + 6\\0 = - x + 6\\x = 6\end{array}\)
Dari gambar di atas, diperoleh bahwa daerah R dibagi dua, yaitu daerah yang dibatasi oleh grafik \(y = \sqrt x \) dansumbu x dengan batas bawah dan atas adalah \({x_1} = {\rm{ }}0\) dan \({x_2} = {\rm{ }}4\) serta daerah yang dibatasi oleh grafik \(y = - x + {\rm{ }}6\) dan sumbu x dengan batas bawah dan atas adalah \({x_2} = {\rm{ }}4\) dan \({x_2} = {\rm{ }}6\)
Volume daerah R
\(\begin{array}{c}{\rm{Volume = }}\pi \int_0^4 {y_1^2} dx + \pi \,\,\int_4^6 {y_2^2\,dx} \\ = \pi \left( {\int_0^4 {{{\left( {\sqrt x } \right)}^2}dx + } \,\,\int_4^6 {{{\left( { - x + 6} \right)}^2}dx} } \right)\\ = \pi \left( {\int_0^4 {x\,\,dx + } \,\,\int_4^6 {\left( {{x^2} - 12x + 36} \right)dx} } \right)\\ = \pi \left( {\left[ {\frac{1}{2}{x^2}} \right]_0^4 + \left[ {\frac{1}{3}{x^3} - 6{x^2} + 36x} \right]_4^6} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \pi \left( {\left[ {\frac{1}{2} \cdot {4^2} - \frac{1}{2} \cdot {0^2}} \right] + \left[ {\frac{1}{3} \cdot {6^3} - 6 \cdot {6^2} + 36 \cdot 6} \right] - \left[ {\frac{1}{3} \cdot {4^3} - 6 \cdot {4^2} + 36 \cdot 4} \right]} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \pi \left( {\left[ {8 - 0} \right] + \left[ {\frac{{216}}{3} - 216 + 216} \right] - \left[ {\frac{{64}}{3} - 96 + 144} \right]} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \pi \left( {\frac{{216}}{3} - \frac{{54}}{3} - 40} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \pi \left( {\frac{{152}}{3} - \frac{{120}}{3}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{32}}{3}\pi \end{array}\)
Jadi, volume daerah R adalah \(\frac{{32}}{3}\pi \)
Kunci Jawaban: D
- (A) 7 × 8!
- (B) 6 × 8!
- (C) 5 × 8!
- (D) 7 × 7!
- (E) 6 × 7!
* Cara duduk semua anggota tanpa ada syarat apapun :C1 = 9!
* Cara duduk semua anggota dengan syarat Ari dan Ira selalu berdampingan :C2 = 2! × 8! Dikali 2! karena Ira Ari dan Ari Ira dihitung berbeda (atau dihitung dua poisisduduk yang berbeda)
* Cara duduk semua anggota dengan Ari dan Ira tidak pernah berdampingan adalah banyak cara duduk semua anggota tanpa syarat apapun dikurangi banyak cara duduk Ari dan Ira selalu berdampingan : C3 = C1 - C2 = 9! - 2! × 8! = 9 × 8! - 2 × 8! = (9 - 2) × 8! = 7 × 8!
Jadi, banyak cara membuat barisan dengan syarat Ari dan Ira tidak berdampingan adalah 7 × 8!.
Kunci Jawaban: A
- (A) \(\sqrt 7 \)
- (B) \(2\sqrt 7 \)
- (C) \(3\sqrt 7 \)
- (D) \(4\sqrt 7 \)
- (E) \(5\sqrt 7 \)
Misal diketahui persamaan lingkaran :
\(\begin{array}{l}{x^2} + {y^2} + Ax + By + C = 0\\{\rm{Jari - jari Lingkaran : r = }}\sqrt {{{\left( { - \frac{1}{2}A} \right)}^2} + {{\left( { - \frac{1}{2}A} \right)}^2} - C} \end{array}\)
Misal \({r_1}\) adalah jari-jari dari \({x^2} + {y^2} + Ax + By - 4 = 0\) dan \({r_2}\) adalah jari-jari \({{\rm{x}}^2} + {y^2} + Ax + By + 17 = 0\).
Perhatikan.
\(\begin{array}{l} \Rightarrow \,\,\,r_1^2 = {\left( { - \frac{1}{2}A} \right)^2} + {\left( { - \frac{1}{2}B} \right)^2} - C\\\,\,\,\,\,\,\,\,\,r_1^2 = {\left( { - \frac{1}{2}A} \right)^2} + {\left( { - \frac{1}{2}B} \right)^2} + 4\\\,\,r_1^2 - 4 = \frac{1}{4}{A^2} + \frac{1}{4}{B^2}...............i)\\ \Rightarrow \,\,\,\,r_2^2 = {\left( { - \frac{1}{2}A} \right)^2} + {\left( { - \frac{1}{2}B} \right)^2} - C\\\,\,\,\,\,\,\,\,\,r_2^2 = {\left( { - \frac{1}{2}A} \right)^2} + {\left( { - \frac{1}{2}B} \right)^2} - 17\\r_2^2 + 17 = \frac{1}{4}{A^2} + \frac{1}{4}{B^2}.................ii)\end{array}\)
Samakan persamaan (i) dan (ii)
\(\begin{array}{l}\,\frac{1}{2}{A^2} + \frac{1}{4}{B^2} = \frac{1}{4}{A^2} + \frac{1}{4}{B^2}\\\,\,\,\,\,\,\,\,\,\,\,r_1^2 - 4 = r_2^2 + 17\\\,\,\,\,\,\,r_1^2 - \frac{1}{4}r_1^2 = 17 + 4\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{3}{4}r_1^2 = 21\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,r_1^2 = 21 \times \frac{4}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,r_1^2 = 28\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{r_1} = \sqrt {28} \,\,\, = 2\sqrt 7 \end{array}\)
Jadi, panjang jari-jari lingkaran yang besar adalah \(2\sqrt 7 \)
Kunci Jawaban: B
- (A) 1
- (B) 3
- (C) 5
- (D) 7
- (E) 9
Diketahui \({\rm{p}}\left( x \right) = {x^3} + a{x^2} + 4x + 2b + 1\) diabagi \({x^2} + 4\)
Perhatikan pembagian biasa berikut :
\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\, + \,\,\,a\\{x^2} + 4\overline {\left| \begin{array}{l}\,\,\,\,{x^3} + a{x^2} + 4x\, + \left( {1 + 2b} \right)\,\\\,\,\,\,\,\underline { - {x^3}\, - 4x} \,\,\,\,\,{\,_ - }\\\,\,\,\,\,a{x^2} + \left( {1 + 2b} \right)\\\,\,\,\,\,\,\underline {\, - a{x^2}\, - 4a} \,\,\,\,\,{\,_ - }\\\,\,\,\,\,\,\,\left( {1 + - 4a + 2b} \right)\end{array} \right.} \end{array}\)
Karena p(x) dibagi oleh \({{\rm{x}}^2} + 4\) bersisa \(b - 3a\), maka
\(\begin{array}{l}\,1 - 4a + 2b = b - 3a\\\,b = - 1 + a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)\end{array}\)
Di sisi lain, didapat
\(\begin{array}{l}\,{\rm{p}}\left( { - 1} \right) = {\left( { - 1} \right)^3} + a{\left( { - 1} \right)^2} + 4\left( { - 1} \right) + 2b + 1\\0 = - 1 + a - 4 + 2b + 1\\\,4 = a + 2b\end{array}\)
Substitusi persamaan (i) ke (ii)
\(\begin{array}{l}\,4 = a + 2b\\\,4 = a + 2\left( { - 2 + 2a} \right)\\\,4 = a - 2 + 2a\\\,\,6 = 3a\,\,\, \Rightarrow \,\,\,a = 2\end{array}\)
Substitusi nilai a = 2 ke persamaan (i)
Jadi, nilai \({a^2} + {b^2} = {2^2} + 1 = 5\)
Kunci Jawaban: C
- (A) \( - \frac{2}{3}\)
- (B) \( - \frac{33}{48}\)
- (C) \( - \frac{86}{243}\)
- (D) \( - \frac{191}{768}\)
- (E) \( - \frac{374}{1875}\)
Diketahui garis singgung kurva \(y = \frac{1}{3}{x^3} + 1\) di titik P(a, b)
\(\begin{array}{c}y = \frac{1}{3}{x^3} + 1\\\,y' = {x^2}\\\,m = y'\left( a \right) = {a^2}\end{array}\)
Karena garis-garis singgung kurva \(y = \frac{1}{3}{x^3} + 1\) di titik P(a,b) membentuk segitiga sama kaki pada kuadran II, maka
\(\begin{array}{c}m = \tan \alpha \\\,\, = \tan 45^\circ \,\, = 1.\end{array}\)
Sehingga \({a^2} = 1\,\,\, \Rightarrow \,\,\,a = \pm 1\) Karena titik P(a,b) berada pada kuadran II, nilai a = -1, maka
\(\begin{array}{c}\,{\rm{y = }}\frac{1}{3}{x^3} + 1\\\,b = \frac{1}{3}.{\left( { - 1} \right)^3} + 1\\\,\, = \frac{1}{3} \cdot - 1 + 1\\\, = - \frac{1}{3} + \frac{3}{3}\,\,\, = \frac{2}{3}\end{array}\)
Dan diperolehlah \(a \cdot b = - 1 \cdot \frac{2}{3} = - \frac{2}{3}\)
Jadi, nilai \(a \cdot b = - \frac{2}{3}\)
Kunci Jawaban: A
- (A) \(\frac{{\sqrt 2 }}{4}\)
- (B) \(\frac{{\sqrt 2 }}{2}\)
- (C) \({\sqrt 2 }\)
- (D) \({2\sqrt 2 }\)
- (E) \({4\sqrt 2 }\)
Misal \(u = {x^2}\), maka
\(\begin{array}{c}{\rm{u = }}{{\rm{x}}^2}\\\,du = 2x\,dx\\\,\frac{{du}}{{2x}} = dx\end{array}\)
Selanjutnya, diperoleh batas bawah dan atas yang baru
👀untuk \(x = 0 \to u = {0^2} = 0\)
👀untuk \(x = 2 \to u = {2^2} = 4\)
Karena \(\int_0^4 {f\left( x \right)\,dx\, = \sqrt 2 } \) maka
\(\begin{array}{l}\,\int_0^2 {xf\left( {{x^2}} \right)dx = \int_0^4 {xf\left( u \right)\frac{{du}}{{2x}}} } \\\, = \int_0^4 {(frac{1}{{2x}} \cdot xf\left( u \right)\,du} \\\, = \frac{1}{2}\int_0^4 {f\left( u \right)\,du} = \frac{1}{2}\sqrt 2 \end{array}\) Jadi, \({\rm{ }}\int_0^2 {xf\left( {{x^2}} \right)\,\,dx = \frac{{\sqrt 2 }}{2}} \)
Jadi, \({\rm{ }}\int_0^2 {xf\left( {{x^2}} \right)\,\,dx = \frac{{\sqrt 2 }}{2}} \)
Kunci Jawaban: B
- (A) 20
- (B) 21
- (C) 22
- (D) 23
- (E) 24
Diketahui \({a_1} = 5{\rm{ dan }}{a_2} = 8\), maka beda b = 3. Sehingga
\(\begin{array}{l}\,\,{{\rm{u}}_n} = a + \left( {n - 1} \right)b\\\, = 5 + \left( {n - 1} \right)3\\\, = 5 + 3n - 3\\\, = 3n + 2\\\,{u_{100}} = 3\left( {100} \right) + 2\\\,\, = 300 + 2\, = 302\end{array}\)
Diketahui \({b_1} = 3\) dan \({b_2} = 7\), maka beda b = 4. Berakibat
\(\begin{array}{l}{{\rm{u}}_n} = a + \left( {n - 1} \right)b\\\, = 3 + \left( {n - 1} \right)4\\\, = 3 + 4n - 4\\\, = 4n - 1\\\,\,{u_{100}} = 4\left( {100} \right) - 4\\\, = 400 - 1 = 396\end{array}\)
Perhatikan barisan aritmetika \(\left( {{a_n}} \right)\) dan \(\left( {{b_n}} \right)\)
\(\begin{array}{l}A = {a_n} = \left\{ {5,8,11,14,17,20,23,26,29,32,35,...,302} \right\}\\B = {b_n} = \left\{ {3,7,11,15,19,23,27,31,35,...,396} \right\}\end{array}\)
Dari barisan \(\left( {{a_n}} \right)\) dan \(\left( {{b_n}} \right)\) diperoleh bahwa
\({\rm{A}} \cap {\rm{B = }}\left\{ {11,23,35,..., \le 302} \right\}\)
Oleh karena itu, didapat a = 11 dan b = 23 – 11 = 12.
\(\begin{array}{l}{{\rm{U}}_n} = a + \left( {n - 1} \right)b\\\, = 11 + \left( {n - 1} \right)12\\\,\, = 11 + 12n - 12\\\, = 12n - 1\end{array}\)
Karena barisan dari \({\rm{A}} \cap {\rm{B}}\) harus kurang dari atau sama dengan \({\rm{302}}\left( {{U_n}} \right)\), maka
\(\begin{array}{l}\,{{\rm{U}}_n} \le 302\\\,12n - 1 \le 302\\\,12n \le 303\\\,n \le \frac{{303}}{{12}} = 25,25\end{array}\) Jadi, banyak anggota \({\rm{A}} \cap {\rm{B}}\) adalah 25
Kunci Jawaban: …
- (A) \(\frac{{9\pi }}{4}\)
- (B) \({3\pi }\)
- (C) \(\frac{{11\pi }}{4}\)
- (D) \(\frac{{14\pi }}{4}\)
- (E) \(\frac{{15\pi }}{4}\)
Berikut sifat trigonometri yang akan digunakan
\(\begin{array}{l}{\rm{Sifat Trigonometri : si}}{{\rm{n}}^2}x + {\cos ^2}x = 1\\\sin \left( {2x} \right) - 2{\cos ^2}x \ge - 2\\2\sin x\cos x - 2{\cos ^2}x \ge - 2\\\sin x\cos x - {\cos ^2}x \ge - 1\\\sin x\cos x - {\cos ^2}x + 1 \ge 0\\\sin x\cos x - {\cos ^2}x + {\sin ^2}x + {\cos ^2}x \ge 0\\\,\sin x\cos x + {\sin ^2}x \ge 0\\\,\,\sin x\left( {\cos x + \sin x} \right) \ge 0\end{array}\)
Oleh karena itu, diperoleh
\(\begin{array}{l} \Rightarrow \sin x = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\\,\sin x = \sin 180{\rm{ atau }}\sin 360\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\\,x = \pi {\rm{ atau }}2\pi \\ \Rightarrow \cos x = - \sin x\\\cos x + \sin x = 0\,\,(dibagi\cos x)\\\tan x = - 1\\\tan x = \tan 315\\x = \frac{7}{4}\pi \end{array}\)
Karena solusi dari pertidaksamaan tersebut berbentuk [a, b] maka solusinya adalah \(\left[ {\pi ,\frac{7}{4}\pi } \right]{\rm{ atau }}\left[ {\frac{7}{4}\pi ,2\pi } \right]\) untuk \(\left[ {a,b} \right] = \left[ {\pi ,\frac{7}{4}\pi } \right]\) diperoleh
\(\begin{array}{l}a + b = \frac{4}{7}\pi + 2\pi \\\, = \frac{7}{4}\pi + \frac{8}{4}\pi \\\, = \frac{{15}}{4}\pi \end{array}\)
Jadi, nilai a + b adalah \(\frac{{15}}{4}\pi \)
Kunci Jawaban: E
- (A) \(\left\{ {c:c{\rm{ }} < - 3{\rm{ atau }}c{\rm{ }} > 3} \right\}\)
- (B) \(\,\left\{ {c:c{\rm{ }} < 0{\rm{ atau }}c{\rm{ }} > 4} \right\}\)
- (C) \(\left\{ {c:c{\rm{ }} < - 3} \right\}\)
- (D) \(\left\{ {c: - 3 < {\rm{ }}c{\rm{ }} < 4} \right\}\)
- (E) \(\left\{ {c: - \infty < {\rm{ }}c{\rm{ }} < \infty } \right\}\)
Agar grafik \(y = {\rm{ }}{2^{2{x^2} + 3x - c}}\) dan \(y = {\rm{ }}{4^{12{x^2} + {\textstyle{1 \over 2}}x + 1}}\) berpotongan, maka D > 0.
\(\begin{array}{c}\,{{\rm{2}}^{2{x^2} + 3x - c}} = {4^{{\textstyle{1 \over 2}}{x^2} + {\textstyle{1 \over 2}}x + 1}}\\{{\rm{2}}^{2{x^2} + 3x - c}} = {\left( {{2^2}} \right)^{{\textstyle{1 \over 2}}{x^2} + {\textstyle{1 \over 2}}x + 1}}\\2{x^2} + 3x - c = 2\left( {\frac{1}{2}{x^2} + \frac{1}{2}x + 1} \right)\\2{x^2} + 3x - c = {x^2} + x + 2\\{x^2} + 2x - c - 2 = 0.\end{array}\)
Agar kedua grafik tersebut berpotongan, maka D > 0
\(\begin{array}{c}{b^2} - 4ac > 0\\{2^2} - 4\left( 1 \right)\left( { - c - 2} \right) > 0\\4 + 4c + 8 > 0\\4c > - 12\\c > - 3\end{array}\)
Jadi, nilai c agar kedua grafik berpotongan adalah {c: c > -3}
Kunci Jawaban: …
- (A) \((1{\rm{ }} + \sqrt 2 ,\sqrt 2 - 1)\)
- (B) \((1 - {\rm{ }}\sqrt 2 ,\sqrt 2 - 1)\)
- (C) \((1{\rm{ }} + \sqrt 2 ,\sqrt 2 + 1)\)
- (D) \((1{\rm{ }} - \sqrt 2 ,\sqrt 2 - 2)\)
- (E) \((1{\rm{ }} + \sqrt 2 ,\sqrt 2 + 2)\)
Jika diketahui persamaan lingkaran \({x^2} + {y^2} = {r^2}\) dan titik singgung \(\left( {{x_1}, {y_1}} \right)\), maka persamaan garis singgung lingkaran
\(\begin{array}{l} \Rightarrow {\rm{ }}{x_1}x + {y_1}y = {r^2}\\\,{x_1}x + {y_1}y = {r^2}\\1 \cdot x + \left( { - 1} \right) \cdot y = 2\\x - y = 2\\y = x - 2\end{array}\)
Oleh karena itu, persamaan garis singgung lingkaran \({l_1}\) adalah y = x – 2 dengan gradien garis \({l_1}\) adalah \({m_1} = 1.\) Karena \({l_1}\) dan \({l_2}\) tegak lurus, maka
\(\begin{array}{c}\,{m_1} \times {m_2} = - 1\\\,1\,\, \times {m_2} = - 1\\\,{m_2} = - 1\end{array}\)
Jika diketahui persamaan lingkaran \({x^2} + {y^2} = {r^2}\) dan gradient m, maka persamaan garis singgung lingkaran \( \Rightarrow {\rm{ }}y = mx \pm r\sqrt {{m^2} + 1} \)
Karena diketahui lingkaran \({x^2} + {y^2} = 4\), diperoleh bahwa r = 2
\(\begin{array}{c}y = mx \pm r\sqrt {{m^2} + 1} \\ = - 1 \cdot x \pm 2\sqrt {{{\left( { - 1} \right)}^2} + 1} \\ = - x \pm 2\sqrt 2 \end{array}\)
Oleh karena itu, diperoleh garis singgung lingkarannya
\(\left( {{l_2}} \right)\) adalah \(y = - x + 2\sqrt 2 \) atau \(y = - x - 2\sqrt 2 .\)
Karena garis \({l_1}\) dan \({l_2}\) berpotongan maka
👀Untuk \({l_1}\) dan \({l_2}\) yaitu \(y = x - 2\,\,\,{\rm{dan}}\,\,\,y = - x + 2\sqrt 2 \)
Selanjutnya diperoleh
\(\begin{array}{l}x - 2 = - x + 2\sqrt 2 \\2x = 2 + 2\sqrt 2 \\\,x = 1 + \sqrt 2 \end{array}\)
Oleh karena itu, diperoleh titik potong garis \({l_1}\) dan \({l_2}\) adalah \(\left( {1 + \sqrt 2 ,\sqrt 2 - 1} \right)\)
👀Untuk \({l_1}\) dan \({l_2}\) yaitu y = x – 2 dan \(y = - x - 2\sqrt 2 .\)
\(\begin{array}{c}x - 2 = - x - 2\sqrt 2 \\2x = 2 - 2\sqrt 2 \\x = 1 - \sqrt 2 \end{array}\)
Selanjutnya diperoleh
\(\begin{array}{c}y = x - 2\\ = \left( {1 - \sqrt 2 } \right) - 2\\ = - \sqrt 2 - 1\end{array}\)
Oleh karena itu, diperoleh titik potong garis \({l_1}\) dan \({l_2}\) adalah \(\left( {1 - \sqrt 2 , - \sqrt 2 - 1} \right).\)
Dari opsi jawaban pada pilihan ganda, maka dapat disimpulkan bahwa titik potong garis \({l_1}\) dan \({l_2}\) adalah \(\left( {1 + \sqrt 2 ,\sqrt 2 - 1} \right)\)
Kunci Jawaban: A