Pengukuran Sudut pada Trigonometri
Bimbel WIN: Memahami Konsep dan mampu menjawab soal HOTS tentang trigonometri dengan mempelajari soal-soal dan pembahasan yang sudah Tertaksonom berikut. Pada laman ini juga disajikan latihan soal online yang sudah diberik level tingkat kesulitannya.
I. SATUAN SUDUT
Sebelum
kita membahas lebih jauh tentang Trigonometri, terlebih dahulu kita melihat
satuan pengukuran sudut dan conversinya.
\(\begin{array}{l}\angle \,1\,\,rad\,\,{\rm{panjang}}\,\,{\rm{busurnya}} = r\\\angle AOB\,\,{\rm{panjang}}\,\,{\rm{busurnya}}\,\,{\rm{ = }}\,\,{\rm{4}}\\{\rm{kita gunakan}}\,\,{\rm{rumus}}\\{\rm{perbandingan senilai}}\\\frac{{\angle AOB}}{{1\,\,radian}} = \frac{{ \cap AB}}{r}\,\,\,(kali\,silang)\\\angle AOB = \frac{{ \cap AB}}{r} \times 1\,\,radian\\\angle AOB = \frac{4}{2}\,\,radian = \,\,\,2\,\,rad.\end{array}\)
💥Kunci B
💦Soal No.2.
\(\begin{array}{l}\angle \,1\,\,rad\,\,{\rm{panjang}}\,\,{\rm{busurnya}} = r = 2\\\angle AOB\,\,{\rm{panjang}}\,\,{\rm{busurnya}}\,\,{\rm{ = }}\,\,{\rm{6}}\\{\rm{kita gunakan}}\,\,{\rm{rumus}}\\{\rm{perbandingan senilai}}\\\frac{{\angle AOB}}{{1\,\,radian}} = \frac{{ \cap AB}}{r}\,\,\,(kali\,silang)\\\angle AOB = \frac{{ \cap AB}}{r} \times 1\,\,radian\\\angle AOB = \frac{6}{2}\,\,radian = \,\,\,3\,\,rad.\end{array}\)
💥 Kunci C
💦Soal No. 03.
\(\begin{array}{l}1\,\,putaran = {360^o}\\\frac{2}{3}putaran = {x^o}\\kita\,\,gunakan\,\,rumus\,\\perbandingan\,\,senilai\\\frac{{{x^o}}}{{{{360}^o}}} = \frac{{\frac{2}{3}putaran}}{{1\,putaran}}\,\,\,(kali\,silang)\\{x^o} = \frac{2}{3} \times {360^o} = {240^o}\end{array}\)
💥Kunci D
💦Soal No 04.
\(\begin{array}{l}1\,\,putaran = 2\pi \,rad\\\frac{1}{6}putaran = x\,\,rad\\kita\,\,gunakan\,\,rumus\,\\perbandingan\,\,senilai\\\frac{{{x^o}}}{{2\,\pi }} = \frac{{\frac{1}{6}putaran}}{{1\,putaran}}\,\,\,(kali\,silang)\\{x^o} = \frac{1}{6} \times 2\,\pi = \frac{1}{3}\,\pi \,\,rad\end{array}\)
💥Kunci A
💦Soal No. 05.
\(\begin{array}{l}{360^o} = 2\pi \,rad\\{210^o} = x\,\,rad\\kita\,\,gunakan\,\,rumus\,\\perbandingan\,\,senilai\\\frac{{{x^o}}}{{2\,\pi }} = \frac{{{{210}^o}}}{{{{360}^o}}}\,\,\,(kali\,silang)\\{x^o} = \frac{7}{{12}} \times 2\,\pi = \frac{7}{6}\,\pi \,\end{array}\)
💥Kunci A
💦Soal No. 06.
\(\begin{array}{l}{360^o} = 1\,\,putaran\\{45^o} = x\\{\rm{kita gunakan rumus}}\\{\rm{perbandingan senilai}}\\\frac{{{{45}^o}}}{{{{360}^o}}} = \frac{x}{{1\,\,putaran}}\,\,\,{\rm{(Kalisilang)}}\\x = \frac{1}{8}\,\,putaran\end{array}\)
💥Kunci C
💦Soal No.07.
\(\begin{array}{l}\pi \,rad = {180^o}\\\frac{5}{6}\pi \,\,rad = \frac{5}{6} \times {180^o} = {150^o}\end{array}\)
💥Kunci E
💦Soal No.08
\(\begin{array}{l}\pi \,rad = {180^o}\\\frac{1}{3}rad = {x^o}\\Kita\,\,gunakan\,\,rumus\,\,\\perbandingan\,\,senilai\\\frac{{\,\frac{1}{3}\,rad}}{\pi } = \frac{{{x^o}}}{{{{180}^o}}}\,\,\,\,(kali\,silang)\\{x^o} = \frac{{{{180}^o} \times \,\frac{1}{3}\,rad}}{\pi }\\{x^o} = \frac{{{{60}^o}}}{\pi }\end{array}\)
💥Kunci E
💦Soal No. 09.
\(\begin{array}{l}2\pi \,rad = 1\,\,putaran\\\frac{1}{6}rad = x\,\,putaran\\Kita\,\,gunakan\,\,rumus\,\,\\perbandingan\,\,senilai\\\frac{{\,\frac{1}{6}\,\,rad}}{{2\pi \,rad}} = \frac{x}{{1\,\,putaran}}\,\,\,\,(kali\,silang)\\x = \frac{{\,\frac{1}{6}\,}}{{2\pi }}\,\,putaran\,\,\, = \frac{{\,1\,}}{{12\pi }}putaran\end{array}\)
💥Kunci E
💦Soal No 10.
\(\begin{array}{l}2\pi \,rad = 1\,\,putaran\\\frac{5}{6}rad = x\,\,putaran\\Kita\,\,gunakan\,\,rumus\,\,\\perbandingan\,\,senilai\\\frac{{\,\frac{5}{6}\,\,rad}}{{2\pi \,rad}} = \frac{x}{{1\,\,putaran}}\,\,\,\,(kali\,silang)\\x = \frac{{\,\frac{5}{6}\,}}{{2\pi }}\,\,putaran\,\,\, = \frac{5}{{12\pi }}putaran\end{array}\)
💥Kunci E