Soal dan Pembahasan Matematika Dasar SBMPTN 2013 (Kode 128)
- Matematika Dasar -
- (A) 6
- (B) 8
- (C) 10
- (D) 12
- (E) 14
Pembahasan :
\({27^m} = 8\)
\({\left( {{3^m}} \right)^3} = {2^3}\)
\({3^m} = 2\)
\({3.9^m} - {3^{m + 1}}\)
\( = 3.{\left( {{3^m}} \right)^2} - {3^m}.3\)
\( = 3.{\left( 2 \right)^2} - 2.3\)
\( = 12 - 6\)
\( = 6\)
💥 Kunci Jawaban : A
- (A) \(\frac{1}{{25}}\)
- (B) \(\frac{1}{{5}}\)
- (C) \(1\)
- (D) \(5\)
- (E) \(25\)
Pembahasan :
\(^5\log a{ + ^5}\log b = 3\)
\({\underline {{{3.}^5}\log a{ - ^5}\log b = 1} _ + }\)
\({4.^5}\log a = 4\)
\(5\log a = 1\)
\(a = 5\)
\(^5\log 5{ + ^5}\log b = 3\)
\(^5\log b = 2\)
\(b = 25\)
nilai \({\textstyle{b \over a}} = {\textstyle{{25} \over 5}} = 5\)
💥 Kunci Jawaban : D
- (A) \(c < 1\) atau \(c \le 5\)
- (B) \(1 < c \le 5\)
- (C) \( - 1 \le c \le 5\)
- (D) \(c \ge 1\)
- (E) \(c \le 5\)
Pembahasan :
\({x^2} - 2x + \left( {c - 4} \right) = 0\)
\({x_1} > - 1\) dan \({x_2} > - 1\)
(i) akar-akar nya real
\(D \ge 0\)
\({b^2} - 4ac \ge 0\)
\(4 - 4.1.\left( {c - 4} \right) \ge 0\)
\(4 - 4c + 16 \ge 0\)
\( - 4c \ge - 20\)
\(c \le 5\)
(ii) \({x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\)
\({x_{1,2}} = \frac{{2 \pm \sqrt {4 - 4 \cdot 1 \cdot \left( {c - 4} \right)} }}{{2 \cdot \left( 1 \right)}}\)
(ii) \({x_{1,2}} = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\)
\({x_{1,2}} = \frac{{2 \pm \sqrt {4 - 4 \cdot 1 \cdot \left( {c - 4} \right)} }}{{2 \cdot \left( 1 \right)}}\)
\( = \frac{{2 \pm \sqrt {4\left( {5 - c} \right)} }}{2}\)
\( = \frac{{2 \pm 2\sqrt {5\left( {5 - c} \right)} }}{2}\)
\( = 1 \pm \sqrt {5 - 1} \)
(*) \({x_1} = 1 + \sqrt {5 - c} \) dan \({x_2} = 1 - \sqrt {5 - c} \)
\({x_1} > 1\)
\(1 + \sqrt {5 - c} - 1\)
untuk \(c \le 5\) terpenuhi
\({x_2} > - 1\)
\(1 - \sqrt {5 - c} > - 1\)
\( - \sqrt {5 - c} > - 2\)
\(\sqrt {5 - c} > - 2\)
\(5 - c < 4\)
\( - c < - 1\)
\(c > 1\)
Pembahasan :
\(f\left( x \right) = a{x^2} + bx + c \to \) memotong
\(\,sb \times x\) negatif
- (A) (0,1 x 0,25)x
- (B) (0,9 x 0,25)x
- (C) (0,9 x 0,75)x
- (D) (1,1 x 0,25)x
- (E) (1,1 x 0,75)x
Pembahasan :
Harga barang = x rupiah
Diskon = 25% = 0, 25
pajak = 10%
Harga setelah diskon = (1 - 0, 25) . x
= 0, 75x
Harga setelah pajak = 0, 75 x + 10% . 0, 75 x
= 0, 75 x (1 +10%)
= 0, 75 . 1, 1
= (1, 1 x 0,75)x
💥 Kunci Jawaban : E
- (A) \(x < 2\) atau \(x > 3\)
- (B) \(x < 5\) atau \(x > 6\)
- (C) \(x < 0\) atau \(x > 6\)
- (D) \(0 < x < 6\)
- (E) \(0 < x < 6\)
Pembahasan :
\(\frac{{{x^2} - 6x}}{{ - {x^2} + 2ax - 5}} > 0\) dimana 1 < a < 2
cek penyebut : \(D = {b^2} - 4ac\)
\(D = 4{a^2} - 4\left( { - 1} \right)\left( { - 5} \right)\)
\(D = 4{a^2} - 20\)
Jika \(1 < a < 2 \to \) maka \(D < 0\)
Jadi Penyebut Definit negatif ( a < 0: D < 0 )
\( \to \frac{{{x^2} - 6x}}{{ - 1}} > 0\)
\({x^2} - 6x < 0\)
\(x \cdot \left( {x - 6} \right) < 0\)
💥 Kunci Jawaban : D
- (A) 25 m
- (B) 40 m
- (C) 75 m
- (D) 80 m
- (E) 120 m
Pembahasan :
- (A) 12
- (B) 32
- (C) 44
- (D) 128
- (E) 172
Pembahasan :
banyak bayi normal =
jumlah bayi + jumlah bayi
normal R.S A normal RS.B
= (60+32) + (68+12)
= 172
💥 Kunci Jawaban : E
- (A) 40
- (B) 35
- (C) 24
- (D) 20
- (E) 11
Pembahasan :
a, b, c, d \(\begin{array}{l}{\rm{median}}\,\, = 6\\\,\,\frac{{{\rm{b + c}}}}{2}\,\,\,\,\,\, = 6\\b + c = 12\end{array}\) \(\begin{array}{l}{\rm{median}}\,\, = 6\\\,\,\frac{{{\rm{b + c}}}}{2}\,\,\,\,\,\, = 6\\b + c = 12\end{array}\) b dan c -> 6 dan 6 -> 6 x 6 = 36 b dan c -> 5 dan 7 -> 5 x 7 = 35 dan seterusnya
💥 Kunci Jawaban : B
- (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) 3
Pembahasan :
\(f\left( {{\textstyle{1 \over {x - 1}}}} \right)\,\,\,\,\, = {\textstyle{{x - 6} \over {x + 3}}}\)
\({f^{ - 1}}\left( { - 2} \right) = P\)
\(\,\,\,f\left( P \right)\,\,\,\,\,\, = - 2\)
maka \(:{\textstyle{1 \over {x - 1}}} = P\,\,\,\) dan \({\textstyle{{x - 6} \over {x + 3}}} = - 2\)
\(\left( {{\textstyle{1 \over {x - 1}}}} \right)\,\,\,\,\, = {\textstyle{{x - 6} \over {x + 3}}}\)
\({f^{ - 1}}\left( { - 2} \right) = P\)
\(\,\,\,f\left( P \right)\,\,\, = - 2\)
maka \(:{\textstyle{1 \over {x - 1}}} = P\) dan \(\,\,{\textstyle{{x - 6} \over {x + 3}}} = - 2\)
\( \to \frac{1}{{x - 1}}\,\,\,\, = P\)
\(\,\,\,\,\frac{1}{{0 - 1}} = P\)
\(\,\,\,\,\,\,\,\,\,\,\,P = - 1\)
💥 Kunci Jawaban : A
- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2
Pembahasan :
\(\left| {AB} \right| = 4\)
\(\left| {\left[ {\begin{array}{*{20}{c}}a\\1\end{array}\begin{array}{*{20}{c}}b\\{ - 1}\end{array}\begin{array}{*{20}{c}}c\\1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\1\\0\end{array}\begin{array}{*{20}{c}}2\\{ - 1}\\1\end{array}} \right]} \right| = 4\)
\(\left| {\begin{array}{*{20}{c}}{a + b}\\0\end{array}\begin{array}{*{20}{c}}{2a - b + c}\\4\end{array}} \right| = 4\)
\(\frac{{4a + 4b = 4}}{{a + b = 1}}\)
💥 Kunci Jawaban : A
- (A) 5
- (B) 4
- (C) 3
- (D) 2
- (E) 1
Pembahasan:
\( \to {U_1} \times {U_2} \times {U_3} = 105\)
\((a - b) \times a \times (a + b) = 105\)
\({U_1} + {U_2} + {U_3} = 15\)
\(a - b + a + a + b = 15\)
\(3a = 15\)
\(a = 15\)
\((5 - b) \times 5 \times (5 + b) = 105\)
\(25 - {b^2} = 21\) \({b^2} = 4\)
\(b = \pm 2\)
\(\left| {{U_3} - {U_1}} \right| = \left| {\left( {a + b} \right) - \left( {a - b} \right)} \right|\)
\( = \left| {2b} \right|\)
\( = 4\)
💥 Kunci Jawaban : B
- (A) \({\rm{ - }}\frac{{\rm{1}}}{9}{\rm{atau}}\frac{{\rm{1}}}{{\rm{9}}}\)
- (B) \({\rm{ - }}\frac{{\rm{2}}}{{\rm{9}}}{\rm{atau}}\frac{{\rm{2}}}{{\rm{9}}}\)
- (C) \({\rm{ - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{atau}}\frac{{\rm{1}}}{{\rm{3}}}\)
- (D) \({\rm{ - }}\frac{{\rm{4}}}{{\rm{9}}}{\rm{atau}}\frac{{\rm{4}}}{{\rm{9}}}\)
- (E) \( - \frac{{\sqrt 3 }}{3}{\rm{ atau }}\frac{{\sqrt 3 }}{3}\)
Pembahasan :
Geometri tak hingga
\(\frac{a}{{1 - r}} = 3\)
\(\frac{a}{3} = (1 - r)\)
\({U_3} + {U_4} + {U_5} + ... = \frac{1}{3}\)
\(a{r^2} + a{r^3} + a{r^4} + ... = \frac{1}{3}\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}{sp = a{r^2}}\\{r = r}\end{array}\)
\(\frac{{a{r^2}}}{{1 - r}} = \frac{1}{3}\)
\(3a{r^2} = 1 - r\) \(3a{r^2} = \frac{a}{3}\) \({r^2} = \frac{1}{9}\)
\(r = \pm \frac{1}{3}\)
💥 Kunci Jawaban : C
- (A) -3
- (B) -1
- (C) 1
- (D) 2
- (E) 3
Pembahasan :
Parabola \(\begin{array}{l}y = {x^2} - 2x + (m + 2)\\ \Rightarrow \,titik\,puncak\,(p,q)\end{array}\) \(\begin{array}{l}{\rm{p}} = \frac{{ - {\rm{b}}}}{{2{\rm{a}}}}\\{\rm{p}} = \frac{2}{2}\\p = 1\end{array}\) \(\begin{array}{l}{\rm{p}} = \frac{{ - {\rm{b}}}}{{2{\rm{a}}}}\\{\rm{p}} = \frac{2}{2}\\p = 1\end{array}\) Deret geometri tak hingga 3p + q +...= 9 \(\begin{array}{l}{{\rm{U}}_1} = 3{\rm{p r}} = \frac{{{{\rm{U}}_2}}}{{{{\rm{U}}_1}}}\\{\rm{r}} = \frac{{{\rm{m}} + 1}}{3}\\\,\,\,{\rm{a = 3}}\end{array}\) \(\begin{array}{l}\frac{\begin{array}{l}{\rm{Sn}} = 9\\3\end{array}}{{1 - \left( {{\textstyle{{{\rm{m}} + 1} \over 3}}} \right)}} = 9\\\,\,\,\,\,3 = 9 - 3m - 3\\\,\,\,\,\,3 = 6 - 3m\\\,\,\,\,\,3{\rm{m}} = 3\\\,\,\,\,\,\,\,m = 1\end{array}\)
💥 Kunci Jawaban : C
- (A) 51
- (B) 40
- (C) 39
- (D) 36
- (E) 24
Pembahasan:
Angka yang disediakan : 1,3,5,7
- banyak kupon yang dapat dibentuk dari angka (1,2,5,7) \( = \frac{{5!}}{{2!}} = \frac{{5x4x3x2!}}{{2!}} = 60\)
- banyak kupon yang lebih dari angka 53000
1. 53000 - 53999 \(\left| 1 \right|\left| 1 \right|\left| 3 \right|\left| 2 \right|\left| 1 \right| = 3x2x1 = 6\)
2. 57000 - 53999 \(\left| 1 \right|\left| 1 \right|\left| x \right|\left| x \right|\left| x \right| = \frac{{3!}}{{2!}} = 3\)
3. 70000 ke atas \(\left| 1 \right|\left| x \right|\left| x \right|\left| x \right|\left| x \right| = \frac{{4!}}{{2!}} = 12\)
- kupon dengan okde lebih dari 53000 = 6++3+12=21
- kupon dengan kode kurang dari 53000 = 60-21 = 39
💥 Kunci Jawaban : C