Soal dan Pembahasan Matematika Dasar SNMPTN 2012 (Kode 122)
Bimbel WIN:
- MATEMATIKA -
💦 Soal No 01
Jika a dan b adalah bilangan bulat positif yang memenuhi \({a^b} = {\rm{ }}{2^{20}} - {2^{19}}\), maka nilai a+b adalah ....
- (A) 3
- (B) 7
- (C) 19
- (D) 21
- (E) 23
Pembahasan:
\(\begin{array}{l}{a^b} = {2^{20}} - {2^{19}}\\{\rm{ = }}{{\rm{2}}^{19}} \cdot \,\,\,{2^1} - {2^{19}} \cdot \,\,\,{2^0}\\{\rm{ = }}{{\rm{2}}^{19}}\left( {{2^1} - {2^0}} \right)\\{\rm{ = }}{{\rm{2}}^{19}}\left( 1 \right)\\{\rm{ = }}{{\rm{2}}^{19}}\end{array}\)
maka a = 2, b = 19 a + b = 2 + 9 = 21
💥 Kunci Jawaban: D
- (A) \(\frac{{xy}}{{x + y}}\)
- (B) \(\frac{{xy + y}}{x}\)
- (C) \(\frac{{xy}}{{y + 1}}\)
- (D) \(\frac{{xy + 1}}{x}\)
- (E) \(\frac{{xy + 1}}{y}\)
Pembahasan :
\(\begin{array}{l}^3\log 14\,\,{\rm{ = }}\,\,\frac{{\log {\rm{ }}14}}{{\log {\rm{ }}3}}\\{\rm{ = }}\,\,\frac{{^3\log {\rm{ }}2{ + ^3}\log {\rm{ 7}}}}{{^3\log {\rm{ 3}}}}\\{\rm{ }}\,{\rm{ = }}\,\,\frac{{\frac{1}{x} + y}}{1} = \frac{{1 + xy}}{x}\end{array}\)
💥 Kunci Jawaban: D
- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4
Pembahasan :
Misalkan :
\(\alpha = \left( {P + 1} \right){\rm{ dan }}\beta {\rm{ = }}\left( {p - 1} \right)\)
adalah akar - akar persamaan x2-4x+a=0 sehingga
\(\begin{array}{l} * {\rm{ }}\alpha {\rm{ + }}\beta \,\,\,{\rm{ = }}\,\,\frac{{ - \,b}}{a}\\{\rm{ 4}}\,\,{\rm{ = }}\,\,{\rm{P + 1 + P - 1}}\\{\rm{ 4}}\,\,{\rm{ = }}\,\,{\rm{2P}} \to {\rm{P2}}\end{array}\) \(\begin{array}{l} * {\rm{ }}\alpha \cdot \beta \,\,{\rm{ = }}\,\,\frac{c}{a}\\{\rm{ a}}\,\,\,{\rm{ = }}\,\,\left( {P + 1} \right) \cdot \left( {P - 1} \right)\\{\rm{ a}}\,\,\,{\rm{ = }}\,\,\left( {2 + 1} \right)\left( {2 - 1} \right)\\{\rm{ a}}\,\,\,{\rm{ = }}\,\,\left( 3 \right) \cdot \left( 1 \right)\\{\rm{ a}}\,\,\,{\rm{ = }}\,\,{\rm{3}}\end{array}\)
💥 Kunci Jawaban: D
- (A) 8
- (B) 16
- (C) 24
- (D) 32
- (E) 40
Pembahasan :
\({\rm{f(x) = a}}{{\rm{x}}^2}{\rm{ + bx + c}}\) melalui titik (-2,0),(-1,0)dan (0,-2). Fungsi kuadrat yang grafiknya melalui titik potong sumbu x dan ada titik sembarang adalah : \(\begin{array}{l} * {\rm{ y = a}}\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\\{\rm{ - 2 = a}}\left( {0 + 2} \right)\left( {0 + 1} \right)\\{\rm{ - 2 = a}}\left( 2 \right)\\{\rm{ a = - 1 maka}}\\ * {\rm{ y = - 1}}\left( {x + 2} \right)\left( {x + 1} \right)\\{\rm{ y = - }}\left( {{x^2} + 3x + 2} \right)\\ * {\rm{ f(5) = - }}\left( {25 + 15 + 2} \right)\\{\rm{ = - 42}}\end{array}\)
💥 Kunci Jawaban: C
- (A) \(x \le 1\,atau\,x \ge 1\)
- (B) \(x \le - 2\,atau\,x \ge 2\)
- (C) \(x \le 2\,atau\,x \ge 0\)
- (D) \( - 1 \le x \le 1\)
- (E) \( - 2 \le x \le 0\)
Pembahasan :
\(\begin{array}{l}\left( {x + 1} \right)\left( {x + 2} \right) \ge \left( {x + 2} \right)\\\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x + 2} \right) \ge 0\\\left( {x + 2} \right)\left( {x + 1 - 1} \right) \ge 0\\\left( {x + 2} \right)\left( x \right) \ge 0\\x = - 2{\rm{ atau x = 0}}\end{array}\)
- (A) 18
- (B) 16
- (C) 14
- (D) 12
- (E) 10
Pembahasan :
\(\begin{array}{l}2x - y{\rm{ }} = 6 \cdot \cdot \cdot (1)\\2y + 3z = 4 \cdot \cdot \cdot (2)\\3x - z{\rm{ }} = 8 \cdot \cdot \cdot (3)\\(1) + (2) + (3)\\{\rm{ 5x + y + 2z = 18}}\end{array}\)
💥 Kunci Jawaban: A
- (A) 12%
- (B) 15%
- (C) 20%
- (D) 22%
- (E) 80%
Pembahasan :
\({\rm{Persen }}{f_{\,\,{\rm{nilai u}}}}\,\,{\rm{ = }}\,\,\left( {\frac{{f{\rm{ ku}} - {\rm{f k}}\left( {u - 1} \right)}}{{fk}}} \right)\,\,\, \times \,\,\,100\% \) \({\rm{Persen }}{f_{\,\,{\rm{nilai 8}}}}\,\,{\rm{ = }}\,\,\left( {\frac{{f{\rm{ k8}} - {\rm{f k7}}}}{{fk}}} \right)100\% \) \(\begin{array}{l} = \left( {\frac{{22 - 19}}{{22}}} \right)100\% \\ = 12,5\% \end{array}\)
💥 Kunci Jawban: A
- (A) 1,0
- (B) 1,2
- (C) 1,5
- (D) 1,8
- (E) 2,0
Pembahasan :
\(\begin{array}{l}{n_1} = 4\\{\overline x _1} = 7,0\\{n_{gabungan}} = 8\\{\overline x _{gabungan}} = 8,0\\{n_2} = 4\\{\overline x _2} = \cdot \cdot \cdot \\{\overline x _{gab.}} = \frac{{{n_1}{{\overline x }_1} + {n_2}\overline {{x_2}} }}{{{n_1} + {n_2}}}\\8,0{\rm{ = }}\frac{{4x7,0 + 4{{\overline x }_2}}}{8}\left( {bagi{\rm{ 4}}} \right)\\8,0\left( 2 \right) = 7,0 + {\overline x _2}\\16,0 - 7,0 = {\overline x _2}\\{\overline x _2} = 9,0\end{array}\)
nilai rata-rata semester II naik sebesar : 9, 0 - 8, 0 = 1, 0
💥 Kunci Jawaban: A
- (A) 26
- (B) 30
- (C) 35
- (D) 40
- (E) 43
Pembahasan : f(x,y)=4x + 3y
- (A) 8
- (B) 6
- (C) 4
- (D) 2
- (E) 1
Pembahasan :
\(\begin{array}{l}A \cdot B = \left( {\begin{array}{*{20}{c}}2&0\\0&2\end{array}} \right)\\{\rm{ B = }}{{\rm{A}}^{ - 1}} \cdot \left( {\begin{array}{*{20}{c}}2&0\\0&2\end{array}} \right)\\\det \left( B \right) = \det \left( {{A^{ - 1}}} \right)x4\\\det \left( {B{A^{ - 1}}} \right) = \det \left( B \right)x\det \left( {{A^{ - 1}}} \right)\\{\rm{ = 4}} \cdot {\rm{det}}\left( {{A^{ - 1}}} \right)x\det \left( {{A^{ - 1}}} \right)\\{\rm{ = 4}} \cdot \frac{1}{2}x\frac{1}{2}\\{\rm{ = 1}}\end{array}\)
💥 Kunci Jawaban: E
- (A) 26
- (B) 27
- (C) 28
- (D) 29
- (E) 30
Pembahasan :
Misal ketiga bilangan tersebut
\(\begin{array}{l}{u_1} = a\\{u_2} = a + b\\{u_3} = a + 12\end{array}\)
ketiga bilangan itu berubah menjadi deret geometri
setelah u3=a+12+12=a+24
maka
\(\begin{array}{l}{\left( {a + 6} \right)^2} = a\left( {a + 24} \right)\\{a^2} + 12a + 36 = {a^2} + 24a\\{\rm{ 12a = 36}}\\{\rm{ a = 3}}\end{array}\)
Jumlah ketiga bilangan tersebut
a+a+6+a+12= 3a+18= = 9+18 = 27
💥 Kunci Jawaban: B
- (A) 51
- (B) 41
- (C) 39
- (D) 29
- (E) 20
Pembahasan :
\(\begin{array}{l}{s_n} = p{n^2} + \underline q n\\{u_n} = 2pn + \underline q - p\\b = 2p\end{array}\)
maka :
\(\begin{array}{l}{s_n} = 5{n^2} - 6n\\{u_n} = 10n - 6 - 5\end{array}\) \(\begin{array}{l}{u_n} = 10n - 11\\{u_5} = 50 - 11\\{\rm{ = 39}}\end{array}\)
💥 Kunci Jawaban: C
- (A) \(\frac{3}{5}\)
- (B) \(\frac{1}{2}\)
- (C) \(\frac{2}{5}\)
- (D) \(\frac{1}{4}\)
- (E) \(\frac{1}{5}\)
Pembahasan:
- (A) Rp 3.800.000,00
- (B) Rp 4.200.000,00
- (C) Rp 4.800.000,00
- (D) Rp 5.000.000,00
- (E) Rp 5.200.000,00
Pembahasan :
A + B = 10.000.000 ... (1)
8% A + 10% B = 9.040.000
8A + 10B = 90.400.000
4A + 5B = 45.200.000 ... (2)
(1) dan (2)
4A + 5B = 45.200.000 - 4A + 4B = 40.000.000
B = 5.200.000
A = 10.000.000 - 5.200
= 4.800.000
💥 Kunci Jawaban: C
- (A) 13
- (B) 11
- (C) 7
- (D) 3
- (E) 2
Pembahasan :
\(\begin{array}{l}f(x) = ax + 3\\f(f(x)) = f(ax + 3)\\a(ax + 3) + 3 = 4x + 9\\{\rm{ }}{{\rm{a}}^2}x + 3a + 3 = 4x + 9\\{\rm{ }} * {{\rm{a}}^2} = 4\\{\rm{ a = 2}}\\{\rm{ maka : }}{{\rm{a}}^2} + 3a + 3\\{\rm{ = 4 + 6 + 3}}\\{\rm{ = 13}}\end{array}\)
💥 Kunci Jawaban: A