Soal dan Pembahasan Matematika IPA SBMPTN 2014 (Kode 572)
- (A) m > -1
- (B) m < 1
- (C) -1 < m < 1
- (D) m < -1 atau m > 1
- (E) \(m\,\, < - \frac{2}{3}{\rm{ atau m}}\,\,{\rm{ > }}\,\,\,\frac{2}{3}\)
Pembahasan :
Diketahui \(\alpha {\rm{ dan }}\beta \) adalah akar-akar dari: PK : \(\left( {m - 1} \right){x^2} - \left( {m + 2} \right)x - 10 = 0\) \(*\log \left( {1 + \left( {1 - \alpha } \right)\beta + \alpha } \right)\) \( = \log \left( {1 + \beta - a\beta + \alpha } \right)\) \( = \log \left( {1 + \left( {\alpha + \beta } \right) - \alpha \beta } \right)\) \( = \log \left( {1 + \frac{{m + 2}}{{m - 1}} + \frac{1}{{m - 1}}} \right)\) \( = \log \left( {\frac{{2m + 2}}{{m - 1}}} \right)\) * syarat algoritma ada nilainya numerus > 0 \(\frac{{2m + 2}}{{m - 1}} > 0\) m < -1 atau m > 1
💥 Kunci Jawaban: D
- (A) 3.360
- (B) 4.032
- (C) 7.392
- (D) 10.080
- (E) 24.998
Pembahasan :
Bilangan genap antara 20.000 dan 70.000 dengan digit tak berulang \(20.000{\raise0.7ex\hbox{$s$} \!\mathord{\left/ {\vphantom {s d}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$d$}}29.999 \to = 1x8x7x6x4 = 1344\) \(30.000{\raise0.7ex\hbox{$s$} \!\mathord{\left/ {\vphantom {s d}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$d$}}39.999 \to 18765 = 1x8x7x6x5 = 1680\) \(40.000{\raise0.7ex\hbox{$s$} \!\mathord{\left/ {\vphantom {s d}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$d$}}49.999 \to 18764 = 1x8x7x6x4 = 1344\) \(50.000{\raise0.7ex\hbox{$s$} \!\mathord{\left/ {\vphantom {s d}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$d$}}59.999 \to 18765 = 1x8x7x6x5 = 1680\) \(60.000{\raise0.7ex\hbox{$s$} \!\mathord{\left/ {\vphantom {s d}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$d$}}69.999 \to 18764 = 1x8x7x4 = \frac{{1344}}{{7.392}} + \)
💥 Kunci Jawaban: C
- (A) 2
- (B) 3
- (C) 4
- (D) 6
- (E) 9
Pembahasan :
\(\begin{array}{c}f\left( t \right) = {t^9} - t\\ = t\,.\,\left( {{t^8} + 1} \right)\\ = t\,.\,\left( {{t^4} - 1} \right)\,.\,\left( {{t^4} + 1} \right)\\ = t\,.\,\left( {{t^2} - 1} \right)\,.\,\left( {{t^2} + 1} \right)\,.\,\left( {{t^4} + 1} \right)\end{array}\) \(\begin{array}{l} = t.\left( {t - 1} \right){\rm{ }}.{\rm{ }}\left( {t + 1} \right){\rm{ }}.{\rm{ }}\left( {{t^2} + 1} \right).\left( {{t^4} + 1} \right)\\{\rm{ t}}\,{\rm{ = }}\,{\rm{0}}\,\,{\rm{t}}\,{\rm{ = }}\,{\rm{1}}\,\,{\rm{t}}\,{\rm{ = }}\,{\rm{ - 1 }}\begin{array}{*{20}{c}} \downarrow \\{}\end{array}{\rm{ }}\begin{array}{*{20}{c}} \downarrow \\{}\end{array}{\rm{ }}\end{array}\) tidak memiliki akar real banyak akar real = 3
💥 Kunci Jawaban: B
- (A) 4
- (B) 6
- (C) 8
- (D) 12
- (E) 16
Pembahasan :
Diketahui deret geometri\({U_5} = 48\) \(r = - 2\) \(a{r^4} = 48\) \(a{\left( { - 2} \right)^4} = 48\) a = 3 \(2{u_3} + 3{u_2} = 2a{r^2} + 3ar\) \( = 2.3.4 + 3.3.\left( { - 2} \right)\) =6
💥 Kunci Jawaban: B
- (A) \(\frac{1}{{10}}\)
- (B) \(\frac{3}{{10}}\)
- (C) \(\frac{2}{5}\)
- (D) \(\frac{3}{8}\)
- (E) \(\frac{7}{{16}}\)
Pembahasan :
- (A) \(\left( {\begin{array}{*{20}{c}}1&{ - 5}\\8&0\end{array}} \right)\)
- (B) \(\left( {\begin{array}{*{20}{c}}1&5\\8&0\end{array}} \right)\)
- (C) \(\left( {\begin{array}{*{20}{c}}1&8\\{ - 5}&0\end{array}} \right)\)
- (D) \(\left( {\begin{array}{*{20}{c}}1&3\\{ - 8}&{ - 8}\end{array}} \right)\)
- (E) \(\left( {\begin{array}{*{20}{c}}1&{ - 3}\\8&8\end{array}} \right)\)
Pembahasan :
\(\left[ {\begin{array}{*{20}{c}}x&1\end{array}} \right].A.\left[ {\begin{array}{*{20}{c}}x\\1\end{array}} \right] = {x^2} - 5x + 8\) \(\left[ {\begin{array}{*{20}{c}}x&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}a&b\\c&a\end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\1\end{array}} \right] = {x^2} - 5x + 8\) \(\left[ {\begin{array}{*{20}{c}}{ax + c}&{bx + d}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\1\end{array}} \right] = {x^2} - 5x + 8\) \(\left( {ax + c} \right).x + \left( {bx + d} \right) = {x^2} - 5x + 8\) \(a{x^2} + \left( {b + c} \right)x + d = {x^2} - 5x + 8\) maka : a = 1 ; b + c = -5 ; d = 8 jawaban yang memenuhi A = \(\left[ {\begin{array}{*{20}{c}}1&3\\{ - 8}&8\end{array}} \right]\)
💥 Kunci Jawaban: D
- (A) 18
- (B) 16
- (C) 12
- (D) 9
- (E) 6
Pembahasan :
Barisan aritmatika x = suku pertama y = beda \(\begin{array}{l} \Rightarrow {u_1} = x = b - a\\ \Rightarrow {u_3} = x + 2y = a\\ \Rightarrow {u_6} = x + 5y = 36\\ \Rightarrow {s_9} = \frac{9}{2}\left( {2x + 8y} \right) = 180\end{array}\) \(\begin{array}{l}2x + 8y = 40\\x + 4y = 20\end{array}\) \(\frac{{\begin{array}{*{20}{c}}{x + 5y = 36}\\{x + 4y = 20}\end{array}}}{{y = 16}} - \)
💥 Kunci Jawaban: B
- (A) -2
- (B) -1
- (C) 2
- (D) 3
- (E) 4
Pembahasan :
\(^{\left( {1 + \left| x \right|} \right)}\log \left( {3x + 7} \right) = 2\) \(3x + 7 = {\left( {1 + \left| x \right|} \right)^2}\) \(3x + 7 = 1 + 2\left| x \right| + {x^2}\) \( - 2\left| x \right| = {x^2} - 3x - 6\) \(2\left| x \right| = - {x^2} + 3x + 6\) \(\left( {2x + \left( { - {x^2} + 3x + 6} \right)} \right).\left( {2x - ( - {x^2} + 3x + 6} \right) = 0\) \(\left( { - {x^2} + 5x + 6} \right).\left( {{x^2} - x - 6} \right) = 0\) \( - 1.\left( {{x^2} - 5x - 6} \right).\left( {{x^2} - x - 6} \right) = 0\) \(\left( {x - 6} \right)\left( {x + 1} \right)\left( {x - 3} \right)\left( {x + 2} \right) = 0\) x = 6 ; x = -1 ; x = 3 ; x = -2 TM TM a + b = -1+3 = 2
💥 Kunci Jawaban: C
- (A) (-2, -3)
- (B) (-2, -2)
- (C) (-2, 0)
- (D) (-2, 1)
- (E) (-2, 5)
Pembahasan :
\(y = a{x^2} + bx + c\) (i) melalui titik ( 0,1 ) \(\begin{array}{l}1 = a{\left( 0 \right)^2} + b\left( 0 \right) + c\\c = 1\end{array}\]\[\begin{array}{l}1 = a{\left( 0 \right)^2} + b\left( 0 \right) + c\\c = 1\end{array}\) maka : 2a = b 2a = -4 a = -2 ( ii ) Sumbu simetri \(\begin{array}{l}{x_p} = - 2\\ - \frac{b}{{2a}} = - 2\\b = 2a\\y = - 2{x^2} - 4x + 1\\{y_p} = - 2{\left( { - 2} \right)^2} - 4\left( { - 2} \right) + 1\\{y_p} = - 8 + 8 + 1\\{y_p} = 1\end{array}\) ( iii ) garis singgung parabola sejajar garis \(\begin{array}{l}{m_{gs}} = {m_g}\\{y^1} = - 4 \to x = 0\\2ax + b = - 4\\b = - 1\end{array}\) titik puncak = \(\left( {{x_p},{y_p}} \right) = \left( { - 2,1} \right)\)
💥 Kunci Jawaban: B
- (A) 2x - 3
- (B) 2x + 3
- (C) 3x + 2
- (D) -3x + 2
- (E) 3x + -2
Pembahasan :
\(P\left( x \right):\left( {x - 1} \right) \to s = - 1 \to P\left( 1 \right) = - 1\) \(\begin{array}{l}P\left( x \right):\left( {x + 2} \right) \to s = 5 \to P\left( { - 1} \right) = 5\\Q\left( x \right):\left( {x - 1} \right) \to s = - 2 \to Q\left( { - 1} \right) = - 2\\Q\left( x \right):\left( {x + 2} \right) \to s = 1 \to Q\left( { - 2} \right) = 1\\P\left( {Q\left( x \right)} \right):{x^2} + x - 2 \to s = ax + b\\p\left( {Q\left( x \right)} \right) = H\left( x \right)\,.\,\left( {{x^2} + x - 2} \right) + \left( {ax + b} \right)\\x = - 2 \to P\left( {Q\left( 1 \right)} \right) = H\left( 1 \right).\left( {1 + 1 - 2} \right) + a + b\\P\left( { - 2} \right) = a + b\\5 = a + b\end{array}\) \(x = - 2 \to P\left( {Q\left( { - 2} \right)} \right) = H\left( { - 2} \right)\left( {4 - 2 - 2} \right) - 2a + b\) P (1) =-2a+b -1 = -2 + b \(\frac{{\begin{array}{*{20}{c}}{a + b = 5}\\{ - 2a + b = - 1}\end{array}}}{{\begin{array}{*{20}{c}}{3a = 6}\\{a = 2}\end{array}}}\) a + b = 5 2 + b = 5 b = 3 maka : s (x) = 2x + 3
💥 Kunci Jawaban: B
- (A) x + 2y + 4 = 0
- (B) x + y + 3 = 0
- (C) 3x + y + 7 = 0
- (D) x + 3y + 5 = 0
- (E) 2x + y + 5 = 0
Pembahasan :
pers, lingkaran melalui titik (-2,-1)dengan pusat (-p,-p)dan r = p \(\begin{array}{l}{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\\{\left( { - 2 + p} \right)^2} + {\left( { - 1 + p} \right)^2} = {p^2}\\4 - 4p + {p^2} + 1 - 2p + {p^2} = {p^2}\\{p^2} - 6p + = 0\\\left( {p - 5} \right)\left( {p - 1} \right) = 0\\p = 5\,atau\,p = 1\\\end{array}\) \(P = 5\,atau\,P = 1\) \(p = 5 \to pusat\left( { - 5, - 5} \right)dan{\rm{ r = 5}}\) \({L_1} = {\left( {x + 5} \right)^2} + {\left( {y + 5} \right)^2} = {5^2}\) \({x^2} + 10x + 25 + {y^2} + 10y + 25 = 25\) \({x^2} + {y^2} + 10x + 10y + 25 = 0\) \(p = 1 \to pusat\left( { - 1, - 1} \right)dan{\rm{ r = 1}}\) \(\begin{array}{l}{L_2} = {\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = {1^2}\\{x^2} + 2x + 1 + {y^2} + 2y + 1 = 1\\{x^2} + {y^2} + 2x + 2y + 1 = 0\end{array}\) pers ling melalui titik potong dua lingkaran, \(\frac{{\begin{array}{*{20}{c}}{{x^2} + {y^2} + 10x + 10y + 25 = 0}\\{{\rm{ }}{x^2} + {y^2} + 2x + 2y + 1 = 0}\end{array}}}{{{\rm{ }}\begin{array}{*{20}{c}}{8x + 8y + 24 = 0}\\{{\rm{ }}x + y + 3 = 0}\end{array}}}\)
💥 Kunci Jawaban: A
- (A) \(\left( {2\sqrt 3 + 3} \right)/10\)
- (B) \(\left( {3\sqrt 3 + 3} \right)/10\)
- (C) \(\left( {4\sqrt 3 + 3} \right)/10\)
- (D) \(\left( {3\sqrt 3 - 3} \right)/10\)
- (E) \(\left( {4\sqrt 3 - 3} \right)/10\)
Pembahasan :
Diketahui : tan x \( - \frac{3}{4}\dim ana{\rm{ }}\frac{{3\pi }}{2} < x < 2\pi \) sin \(\left( {{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/ {\vphantom {\pi 3}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$3$}} - x} \right) = \sin \frac{\pi }{3}.\cos x - \cos \frac{\pi }{3}.\sin x\) \( = \left( {\frac{1}{2}\sqrt 3 .\frac{4}{5}} \right) - \left( {\frac{1}{2}.\left( {\frac{{ - 3}}{5}} \right)} \right)\) \( = \frac{{4\sqrt 3 }}{{10}} + \frac{3}{{10}}\) \( = \frac{1}{{10}}\left( {4\sqrt 3 + 3} \right)\)
- (A) \(\frac{1}{3}\left( {u + v + w} \right)\)
- (B) \(\frac{1}{2}\left( {u + v + w} \right)\)
- (C) \(\frac{2}{3}\left( {u + v + w} \right)\)
- (D) \(\frac{3}{4}\left( {u + v + w} \right)\)
- (E) \(u + v + w\)
Pembahasan :
\(\begin{array}{l}\overline {OP} = \frac{1}{3}\overline {OA} + \frac{1}{3}\overline {OB} + \frac{1}{3}\overline {OC} \\\overline {TP} = \overline {TO} + \overline {OP} \\ = \frac{1}{3}\overline {TO} + \frac{1}{3}\overline {TO} + \frac{1}{3}\overline {TO} + \frac{1}{3}\overline {OA} + \frac{1}{3}\overline {OB} + \frac{1}{3}\overline {OC} \\TP = \,\frac{1}{3}\left( {\overline {TO} + \overline {OA} } \right) + \frac{1}{3}\left( {\overline {TO} + \overline {OB} } \right) + \frac{1}{3}\left( {\overline {TO} + \overline {OC} } \right)\\ = \frac{1}{3}\overline {TA} + \frac{1}{3}\overline {TB} + \frac{1}{3}\overline {TC} \\ = \frac{1}{3}\left( {\overline U + \overline V + \overline W } \right)\end{array}\)
💥 Kunci Jawaban: A
- (A) 2 : 1
- (B) 3 : 1
- (C) 6 : 1
- (D) 8 : 1
- (E) 9 : 1
Pembahasan :
Diketahui : \(\frac{{A(xo)}}{{A(1)}} = \frac{1}{8}\) \(\frac{{\int\limits_0 {^{xo}b{x^2}{\rm{ dx}}} }}{{\int\limits_0 {^1b{x^2}{\rm{ dx}}} }} = \frac{1}{8}\) \(\frac{{\frac{1}{3}b{\rm{ }}{{\rm{x}}_o}^3}}{{\frac{1}{3}b{{.1}^3}}} = \frac{1}{8}\) \({x_o}^3 = \frac{1}{8}\) \({x_o} = \frac{1}{2}\) \(\frac{{{L_{ABPQ}}}}{{{L_{DCPQ}}}} = \frac{{\frac{1}{2}\left( {\frac{1}{4}b + b} \right).{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}{{\frac{1}{2}.\left( {\frac{1}{4}b + b} \right).{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$3$}}}}\) \( = \frac{3}{1}\)
💥 Kunci Jawaban: B
- (A) - 1
- (B) \( - \frac{1}{3}\)
- (C) \(\frac{1}{3}\)
- (D) 1
- (E) 2
Pembahasan :
\(\begin{array}{l}\mathop {Lim}\limits_{x \to a} \frac{{f\left( {{x^3}} \right) - f\left( {{a^3}} \right)}}{1} = - 1\\\frac{{3{x^2}.{f^1}\left( {{x^3}} \right) - 0}}{1} = - 1\\x = a \to 3{a^2}.{f^1}\left( {{a^3}} \right) = - 1\\{\rm{ }}{{\rm{f}}^1}\left( {{a^3}} \right) = \frac{{ - 1}}{{3{a^2}}}\\a = 1 \to {f^1}\left( {{1^3}} \right) = - \frac{1}{{3{{\left( 1 \right)}^2}}}\\f'(1) = - \frac{1}{3}\end{array}\)
💥 Kunci Jawaban: B