Soal dan Pembahasan Matematika Dasar SBMPTN 2015 (Kode 609)
💦 Soal No. 46
Diketahui a, b, dan c adalah bilangan real positif. Jika \(\frac{{\sqrt {bc} }}{{\sqrt[4]{{a{b^3}}}}} = ab\), maka nilai c adalah ...
- (A) \({\left( {ab} \right)^{\frac{5}{2}}}\)
- (B) \({\left( {ab} \right)^{\frac{5}{4}}}\)
- (C) \({\left( {ab} \right)^{\frac{1}{4}}}\)
- (D) \({\left( {ab} \right)^{ - \frac{3}{1}}}\)
- (E) \({\left( {ab} \right)^{ - \frac{3}{2}}}\)
Pembahasan:
\(\begin{array}{l}\frac{{\sqrt {{\rm{bc}}} }}{{\sqrt[4]{{{\rm{a}}{{\rm{b}}^3}}}}} = {\rm{ab}}\\\frac{{{{\rm{b}}^{\frac{1}{2}}}\,.\,{{\rm{c}}^{\frac{1}{2}}}}}{{{{\rm{a}}^{\frac{1}{4}}}\,.\,{{\rm{b}}^{\frac{3}{4}}}}} = {\rm{ab}}\\{\rm{ }}{{\rm{c}}^{\frac{1}{2}}} = \frac{{{\rm{a }}{\rm{. b }}{\rm{. }}{{\rm{a}}^{\frac{1}{4}}}\,.{\rm{ }}{{\rm{b}}^{\frac{3}{4}}}}}{{{{\rm{b}}^{\frac{1}{2}}}}}\\{\rm{ }}{{\rm{c}}^{\frac{1}{2}}} = {{\rm{a}}^{\frac{5}{4}}}{\rm{ }}{\rm{. }}{{\rm{b}}^{\frac{5}{4}}}\\{\rm{ c }} = {\left( {{{{\rm{(ab)}}}^{\frac{5}{4}}}} \right)^2}\\{\rm{ c }} = {\left( {{\rm{ab}}} \right)^{\frac{5}{2}}}\end{array}\)
💥 Kunci Jawaban : A
- (A) 34
- (B) 32
- (C) 30
- (D) 26
- (E) 16
Pembahasan:
Barisan aritmatika :
\(\begin{array}{l}{\rm{u3}} = 12 \to {\rm{a}} + {\rm{2b}} = {\rm{12}}\\{\rm{u4}} = 10 \to \end{array}\)
\(\frac{{{\rm{a}} + 3{\rm{b}} = 10}}{\begin{array}{l}{\rm{ }} - {\rm{b}} = 2\\{\rm{ b}} = - 2\end{array}} - \)
💥 Kunci Jawaban: C
- (A) 22,5
- (B) 45
- (C) 60
- (D) 67,5
- (E) 90
Pembahasan:
L arsir \(\begin{array}{l}{\rm{ = L }}\Delta {\rm{AEF + L }}\Delta {\rm{AGH}}\\{\rm{ = }}\left( {\frac{{{\rm{EF}} \times {\rm{AB}}}}{2}} \right) + \left( {\frac{{{\rm{GH}} \times {\rm{AD}}}}{2}} \right)\\{\rm{ = }}\left( {\frac{{{\rm{5}} \times {\rm{9}}}}{2}} \right) + \left( {\frac{{3 \times 15}}{2}} \right)\\{\rm{ = }}\frac{{45}}{2} + \frac{{45}}{2}\\{\rm{ = 45 c}}{{\rm{m}}^2}\end{array}\)
💥 Kunci Jawaban: B
Pembahasan:
Kontribusi masing-masing siswa :
\(\begin{array}{l}{\rm{A}} = \frac{1}{2}({\rm{B + C + D}}) \to 2{\rm{A}} = {\rm{B + C + D }}...{\rm{ (i)}}\\{\rm{B}} = \frac{1}{3}({\rm{A + C + D}}) \to {\rm{3B}} = {\rm{A + C + D }}...{\rm{ (ii)}}\\{\rm{C}} = \frac{1}{4}({\rm{A + B + D}}) \to {\rm{4C}} = {\rm{A + B + D }}...{\rm{ (iii)}}\end{array}\)
\(\frac{\begin{array}{l}2{\rm{A}} = {\rm{B + C + D}}\\{\rm{3B}} = {\rm{A + C + D}}\end{array}}{\begin{array}{l}2{\rm{A}} - 3{\rm{B}} = {\rm{B}} - {\rm{A}}\\{\rm{ 3A}} = 4{\rm{B}}\\{\rm{ B}} = \frac{3}{4}{\rm{A}}\end{array}} - \)
\(\frac{\begin{array}{l}{\rm{2A}} = {\rm{B + C + D}}\\{\rm{4C}} = {\rm{A + B + D}}\end{array}}{\begin{array}{l}{\rm{2A}} - 4{\rm{C}} = {\rm{C}} - {\rm{A}}\\{\rm{ 3A}} = {\rm{5C}}\\{\rm{ C}} = \frac{3}{5}{\rm{A}}\end{array}} - \)
\(\begin{array}{l}{\rm{B + C + D}} = 2{\rm{A}}\\{\rm{ }}\frac{3}{4}{\rm{A + }}\frac{3}{5}{\rm{A + D}} = 2{\rm{A}}\\{\rm{ }}\frac{{27}}{{20}}{\rm{A + D}} = 2{\rm{A}}\\{\rm{ D}} = 2{\rm{A}} - \frac{{27}}{{20}}{\rm{A}}\\{\rm{ D}} = \frac{{13}}{{20}}{\rm{A}}\end{array}\)
\(\begin{array}{l}{\rm{ A + B + C + D}} = 900.000\\{\rm{ A + }}\frac{3}{4}{\rm{B + }}\frac{3}{5}{\rm{A + }}\frac{{13}}{{20}} = 900.000\\{\rm{ }}\frac{{13}}{{20}}{\rm{A}} = 900.000\\{\rm{ A}} = 900.000 \times \frac{{20}}{{60}}\\{\rm{ A}} = 300.000\end{array}\)
\(\begin{array}{l}{\rm{D}} = \frac{{13}}{{20}}\,\,.\,\,{\rm{A}}\\{\rm{ }} = \frac{{13}}{{20}}\,\,.\,\,300.000\\{\rm{ }} = 195.000,00\end{array}\)
💥 Kunci Jawaban: C
- (A) 6,33
- (B) 6,50
- (C) 6,75
- (D) 7,00
- (E) 7,25
Pembahasan:
\(\begin{array}{l}\overline {\rm{x}} = \frac{{\left( {6 \times 3} \right) + \left( {7 \times 4} \right) + \left( {8 \times 3} \right)}}{{3 + 4 + 3}}\\{\rm{ }} = \frac{{70}}{{10}}\\{\rm{ }} = 7,00\end{array}\)
💥 Kunci Jawaban: D
- (A) \(\left\{ {x \in R|x < - \frac{3}{2}} \right\}\)
- (B) \(\left\{ {x \in R| - \frac{3}{2} < x < - 1} \right\}\)
- (C) \(\left\{ {x \in R|x > - 2} \right\}\)
- (D) \(\left\{ {x \in R|x > - \frac{3}{2}} \right\}\)
- (E) \(\left\{ {x \in R|x < - \frac{3}{2}\,atau\,x\,\rangle > - 1} \right\}\)
- (A) -5
- (B) -2
- (C) -1
- (D) 1
- (E) 2
Pembahasan:
f(-x) = -f(x) \( \to \) untuk setiap bilangan real x
* f(3) = -5
* f(-5) = 1
\(\begin{array}{l}{\rm{f(f(}} - 3{\rm{))}} = {\rm{f(}} - {\rm{f(3))}}\\{\rm{ }}\,\,\, = {\rm{f(}} - ( - 5){\rm{)}}\\{\rm{ }} = {\rm{f (5)}}\\{\rm{ }} = \frac{{ - {\rm{f(5)}}}}{{ - 1}}\\{\rm{ }} = \frac{{{\rm{f(}} - 5{\rm{)}}}}{{ - 1}}\\{\rm{ }} = \frac{1}{{ - 1}}\\{\rm{ }} = - 1\end{array}\)
💥 Kunci Jawaban: C
- (A) -2
- (B) -1
- (C) \(\frac{1}{2}\)
- (D) 1
- (E) 14
Pembahasan :
\(\begin{array}{l}\frac{{2{\rm{x}} + 1}}{3} + \frac{{3{\rm{y}} - 2}}{2} = 3\\2(2{\rm{x}} + 1) + 3(3{\rm{y}} - 2)\,\, = 18\\{\rm{ }}4{\rm{x}} + 2 + 9{\rm{y}} - 6\,\, = 18\\{\rm{ }}4{\rm{x}} + 9{\rm{y}} = 22{\rm{ }}...{\rm{ (i)}}\\\frac{{8{\rm{x}} + 5{\rm{y}} = 18}}{\begin{array}{l}{\rm{ }}13{\rm{y}} = 26\\{\rm{ y}} = 2\\\end{array}} - \end{array}\) \(\begin{array}{l}\frac{{{\rm{4x}} + {\rm{y}}}}{6} + \frac{{2{\rm{y}} + 2{\rm{x}}}}{3} = 3\\({\rm{4x}} + {\rm{y}}) + 2(2{\rm{y}} + 2{\rm{x}}) = {\rm{18}}\\{\rm{ 8y}} + {\rm{5y}} = 18{\rm{ }}...{\rm{ (ii)}}\end{array}\) eliminasi pers (I) dan pers (II) \(\left. \begin{array}{l} \Rightarrow 4{\rm{x}} + 9{\rm{y}} = 22\\{\rm{ 8x}} + 5{\rm{y}} = 22\end{array} \right|\begin{array}{*{20}{c}}{{\rm{x2}}}\\{{\rm{x1}}}\end{array}\left| {\begin{array}{*{20}{c}}{8{\rm{x}} + 18{\rm{y}} = 44}\\{}\end{array}} \right.\) \(\begin{array}{l} \Rightarrow 4{\rm{x}} + 9(2) = 22\\{\rm{ 4x}} = 4\\{\rm{ x}} = 1\end{array}\) maka nilai \(\frac{{\rm{y}}}{{\rm{x}}} = \frac{2}{1} = 2\)
💥 Kunci Jawaban: E
- (A) 150.000,00
- (B) 180.000,00
- (C) 195.000,00
- (D) 225.000,00
- (E) 300.000,00
💥 Pembahasan :
Kontribusi masing-masing siswa :
\(\begin{array}{l}{\rm{A}} = \frac{1}{2}({\rm{B + C + D}}) \to 2{\rm{A}} = {\rm{B + C + D }}...{\rm{ (i)}}\\{\rm{B}} = \frac{1}{3}({\rm{A + C + D}}) \to {\rm{3B}} = {\rm{A + C + D }}...{\rm{ (ii)}}\\{\rm{C}} = \frac{1}{4}({\rm{A + B + D}}) \to {\rm{4C}} = {\rm{A + B + D }}...{\rm{ (iii)}}\end{array}\)
\( \Rightarrow \) \(\frac{\begin{array}{l}2{\rm{A}} = {\rm{B + C + D}}\\{\rm{3B}} = {\rm{A + C + D}}\end{array}}{\begin{array}{l}2{\rm{A}} - 3{\rm{B}} = {\rm{B}} - {\rm{A}}\\{\rm{ 3A}} = 4{\rm{B}}\\{\rm{ B}} = \frac{3}{4}{\rm{A}}\end{array}} - \)
\( \Rightarrow \) \(\frac{\begin{array}{l}{\rm{2A}} = {\rm{B + C + D}}\\{\rm{4C}} = {\rm{A + B + D}}\end{array}}{\begin{array}{l}{\rm{2A}} - 4{\rm{C}} = {\rm{C}} - {\rm{A}}\\{\rm{ 3A}} = {\rm{5C}}\\{\rm{ C}} = \frac{3}{5}{\rm{A}}\end{array}} - \)
\( \Rightarrow \) \(\begin{array}{l}{\rm{B + C + D}} = 2{\rm{A}}\\{\rm{ }}\frac{3}{4}{\rm{A + }}\frac{3}{5}{\rm{A + D}} = 2{\rm{A}}\\{\rm{ }}\frac{{27}}{{20}}{\rm{A + D}} = 2{\rm{A}}\\{\rm{ D}} = 2{\rm{A}} - \frac{{27}}{{20}}{\rm{A}}\\{\rm{ D}} = \frac{{13}}{{20}}{\rm{A}}\end{array}\)
\( \Rightarrow \)\(\begin{array}{l}{\rm{ A + B + C + D}} = 900.000\\{\rm{ A + }}\frac{3}{4}{\rm{B + }}\frac{3}{5}{\rm{A + }}\frac{{13}}{{20}} = 900.000\\{\rm{ }}\frac{{13}}{{20}}{\rm{A}} = 900.000\\{\rm{ A}} = 900.000 \times \frac{{20}}{{60}}\\{\rm{ A}} = 300.000\end{array}\)
\( \Rightarrow \)\(\begin{array}{l}{\rm{D}} = \frac{{13}}{{20}}\,\,.\,\,{\rm{A}}\\{\rm{ }} = \frac{{13}}{{20}}\,\,.\,\,300.000\\{\rm{ }} = 195.000,00\end{array}\)
💥 Kunci Jawaban: C
- (A) \(\frac{{x - 3}}{3}\)
- (B) \(\frac{{x + 3}}{3}\)
- (C) \(\frac{{3 - x}}{3}\)
- (D) 3 - 3x
- (E) 3x + 3
Pembahasan:
\(\begin{array}{l}{f^{ - 1}}\left( {x + 1} \right) = 3x + 6\\f\left( {3x + 6} \right) = x + 1\end{array}\)
misal :
\(\begin{array}{l}3{\rm{x}} + {\rm{6}} = {\rm{p}}\\{\rm{ x}} = \frac{{{\rm{p}} - 6}}{3}\end{array}\)
\(\begin{array}{l}{\rm{f(p)}} = \frac{{{\rm{p}} - 6}}{3} + 1\\{\rm{f(p)}} = \frac{{{\rm{p}} - 6 + 3}}{3}\\{\rm{f(p)}} = \frac{{{\rm{p}} - 3}}{3}\\{\rm{f(x)}} = \frac{{{\rm{x}} - 3}}{3}\end{array}\)
Kunci Jawaban: A
- (A) 2
- (B) 3
- (C) 5
- (D) 7
- (E) 14
Pembahasan :
\({\rm{A}} = \left[ {\begin{array}{*{20}{c}}{\rm{a}}&{\rm{3}}\\{\rm{1}}&{\rm{1}}\end{array}} \right] \to 141 = {\rm{a}} - 3\)
\(\begin{array}{l} \Rightarrow 2\left| {\rm{A}} \right| = \left| {{{\rm{A}}^{ - 1}}} \right| - 1\\{\rm{ 2}}\left| {\rm{A}} \right| = \frac{1}{{\left| {\rm{A}} \right|}} - 1\\{\rm{ 2}}{\left| {\rm{A}} \right|^2} = 1 - \left| {\rm{A}} \right|\end{array}\)
\(\begin{array}{l}2{\left| {\rm{A}} \right|^2} + \left| {\rm{A}} \right| - 1 = 0\\2{\left( {{\rm{a}} - 3} \right)^2} + ({\rm{a}} - 3) - 1 = 0\\2\left( {{{\rm{a}}^2} - 6{\rm{a}} + 9} \right) + {\rm{a}} - 4 = 0\\2{{\rm{a}}^{\rm{2}}} - 12{\rm{a}} + 18 - {\rm{a}} - 4 = 0\\2{{\rm{a}}^{\rm{2}}} - 13{\rm{a}} + 14 = 0\end{array}\)
\(\begin{array}{l}{\rm{a1}}\,\,{\rm{.}}\,\,{\rm{a2}}\,\, = \frac{{\rm{c}}}{{\rm{a}}}\\{\rm{ }}\,\, = \frac{{14}}{2}\\{\rm{ }} = 7\end{array}\)
💥 Kunci Jawaban: D
- (A) 28
- (B) 12
- (C) 10
- (D) -12
- (E) -28
Pembahasan:
Diketahui x2+7x+t = 0 memiliki dua akar bilangan bulat negatif
\(\begin{array}{l}({\rm{i}}){\rm{ }}{{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}} < 0\\{\rm{ }} - \frac{{\rm{b}}}{{\rm{a}}} < 0\\{\rm{ }} - 7 < 0\,\,({\rm{benar}})\end{array}\)
\(\begin{array}{l}({\rm{iii}}){\rm{ D}} \ge {\rm{0}}\\{\rm{ }}{{\rm{b}}^{\rm{2}}} - 4{\rm{ac}} \ge {\rm{0}}\\{\rm{ 49}} - 4{\rm{t}} \ge {\rm{0}}\\{\rm{ }} - 4{\rm{t}} \ge - 49\\{\rm{ t}} \le \frac{{49}}{4}\end{array}\)
\(\begin{array}{l} \Rightarrow {\rm{ x1}}{\rm{, 2}} = \frac{{ - {\rm{b}} \pm \sqrt {\rm{D}} }}{{{\rm{2a}}}}\\{\rm{ }} = \frac{{ - 7 \pm \sqrt {49 - 4{\rm{t}}} }}{2}\end{array}\)
\( \Rightarrow \) agar akar-akar bulat \(\sqrt {49 - 4{\rm{t}}} \) bilangan ganjil
\(\begin{array}{l}{\rm{ }}\sqrt {49 - 4{\rm{t}}} = 1 \to {\rm{t}} = 12\\{\rm{ }}\sqrt {49 - 4{\rm{t}}} = 3 \to {\rm{t}} = 10\\{\rm{ }}\sqrt {49 - 4{\rm{t}}} = 5 \to {\rm{t}} = 6\\{\rm{ }}\sqrt {49 - 4{\rm{t}}} = 7 \to {\rm{t}} = 0\end{array}\) (tidak memenuhi)
\( \Rightarrow \) Jumlah semua nilai t = 12 + 10 + 6
= 28
💥 Kunci Jawaban: A
- (A) -6 < a < -2
- (B) -6 < a < 2
- (C) -2 < a < 2
- (D) -2 < a < 6
- (E) 2 < a < 6
Pembahasan:
\(\begin{array}{l}{\rm{2x}} - {\rm{y}} = 3 \to {\rm{y}} = 2{\rm{x + }} - 3\\{\rm{y}} = {\rm{x2}} + 4{\rm{x}} + 1\end{array}\)
\( \Rightarrow \) garis dan kurva tidak berpotongan maupun bersinggungan
\(\begin{array}{c}{\rm{y1}} - {\rm{y2}} = 0\\{\rm{(x2 + ax + 1)}} - (2{\rm{x}} - 3) = 0\\{\rm{x2}} + ({\rm{a}} - 2){\rm{x}} + {\rm{4}} = 0\end{array}\)
\(\begin{array}{c}{\rm{D}} < 0\\{\rm{b2}} - {\rm{4ac}} < {\rm{0}}\\{({\rm{a}} - 2)^2} - 4(1)(4) < 0\\{{\rm{a}}^{\rm{2}}} - 4{\rm{a}} + 4 - 16 < 0\\{\rm{a2}} - 4{\rm{a}} - 12 < 0\\{\rm{ }}({\rm{a}} - 6)({\rm{a}} + 2) < 0\end{array}\)
-2 < a < 6
💥 Kunci Jawaban: D
- (A) 4,6
- (B) 4,8
- (C) 5,0
- (D) 5,4
- (E) 5,6
Pembahasan:
Diketahui :
\( > {\rm{ }}{{\rm{x}}_{\rm{1}}}{\rm{, }}{{\rm{x}}_{\rm{2}}}{\rm{, }}{{\rm{x}}_{\rm{3}}}{\rm{, }}{{\rm{x}}_{\rm{4}}}{\rm{, }}{{\rm{x}}_{\rm{5}}} \to \) bilangan bulat (0 s/d 10)
\( > {\rm{ }}{{\rm{x}}_{\rm{3}}} = 8\) (medium) \(\langle \begin{array}{*{20}{c}}{{\rm{ }}8 \le {{\rm{x}}_{\rm{4}}}{\rm{, }}{{\rm{x}}_{\rm{5}}} \le {\rm{10}}}\\{0 \le {{\rm{x}}_{\rm{1}}}{\rm{, x2}} \le {\rm{8}}}\end{array}\)
\(\overline {\rm{x}} = \frac{{{\rm{x1 + x2 + 8 + x4 + x5}}}}{5}\)
> agar rata-rata menjadi minimum maka nilai \({x_1},{x_2},{x_3},{x_4},{x_5}\) harus sama dengan batas terbawah dari interval yang diperbolehkan
\(\begin{array}{l}{{\rm{x}}_{\rm{1}}} = {{\rm{x}}_{\rm{2}}} = 0\\{{\rm{x}}_{\rm{4}}} = {{\rm{x}}_{\rm{5}}} = 8\\\\{\rm{ }}\overline {\rm{x}} = \frac{{0 + 0 + 8 + 8 + 8}}{5}\\{\rm{ }}\overline {\rm{x}} = 4,8\end{array}\)
💥 Kunci Jawaban: B
6 bola bilyar :diambil 3 bola (peluang untuk bilangan kurang dari 300):
(i) ruang sampel
* angka ratusannya adalah 2 : = 1 x 5 x 4 = 20
* angka ratusannya bukan angka 2 tetapi angka puluhannya angka 2: = 4 x 1 x 4 = 16
* angka ratusannya bukan angka 2 dan angka puluhannya bukan angka 2 juga = 4 x 3 x 3 = 36,
maka n(s) = 20 + 16 + 36 = 72
(ii) Banyak bilangan ratusan kurang dari 300
* angka ratusannya adalah angka 2 = 1 x 5 x 4 = 20, n(k) = 20 maka : \(\begin{array}{l}{\rm{P(k) = }}\frac{{{\rm{n(k)}}}}{{{\rm{n(s)}}}}\\{\rm{ = }}\frac{{20}}{{72}}\\{\rm{ = }}\frac{5}{{18}}\end{array}\)
💥 Kunci Jawaban: A