Soal dan Pembahasan Matematika Dasar SBMPTN 2011 (Kode 127)
- Matematika Dasar -
- (A) \(\frac{1}{8}\)
- (B) \(\frac{1}{4}\)
- (C) 4
- (D) 8
- (E) 16
Kunci : D
- (A) 32
- (B) 2
- (C) 0
- (D) -2
- (E) -32
Penyelesaian
\(\begin{array}{l}\frac{1}{4}{{\rm{x}}^2} + {\rm{bx}} + {\rm{a}} = 0\begin{array}{*{20}{c}}{{ \nearrow ^{{{\rm{x}}_1} = 2}}}\\{{ \searrow _{{{\rm{x}}_2} = 2}}}\end{array}\\\frac{1}{4} \cdot 4 + 2{\rm{b}} + {\rm{a}} = 0 \to {\rm{a}} + 2{\rm{b}} = - 1\\{x_1} + {x_2} = 4 \Rightarrow \frac{{{\rm{ - b}}}}{{{\textstyle{{\rm{1}} \over {\rm{4}}}}}}{\rm{ = 4}} \Rightarrow {\rm{b = - 1}}\,\,\,{\rm{; a = 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{maka : a + b = 1 - 1 = 0}}\end{array}\)
Kunci : C
- (A) 61
- (B) 80
- (C) 82
- (D) 87
- (E) 88
- (A) 17
- (B) 13
- (C) 15
- (D) 10
- (E) 5
Penyelesaian
\(\begin{array}{l}{\rm{f}}\left( {{\rm{x}} - 2} \right) = 3 - 2{\rm{x ; }}\left( {{\rm{gof}}} \right)\left( {{\rm{x}} + 2} \right) = 5 - 4{\rm{x}}\\{\rm{f}}\left( {\rm{x}} \right) = 3 - 2\left( {{\rm{x}} + 2} \right)\,\,\,;\,\,\,\left( {{\rm{gof}}} \right)\left( {\rm{x}} \right) = 5 - 4\left( {{\rm{x}} - 2} \right)\\\,\,\,\,\,\,\,\,\,\, = - 2{\rm{x}} + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{gof}}\left( {\rm{x}} \right) = - 4{\rm{x}} + 13\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9\left( x \right)\,\,\,\,\,\, = - 4\left( {{\textstyle{{ - {\rm{x}} + 1} \over 2}}} \right) - 13\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9\left( x \right)\,\,\,\,\,\, = 2{\rm{x}} - {15^2}\,\, \Rightarrow 9\left( { - 1} \right) = - 17\end{array}\)
Kunci A
- (A) 25
- (B) 20
- (C) 15
- (D)10
- (E) 5
Penyelesaian : \({\rm{f}}\left( {\rm{x}} \right) \ge 0\,\,;\,\,{\rm{f}}\left( 1 \right) = 0\,\,;\,\,{\rm{f}}\left( 2 \right) = 2\)
- Titik Puncak \(\,\left( {1,0} \right)\,\, \Rightarrow {\rm{f}}\left( {\rm{x}} \right) = {\rm{a}}{\left( {{\rm{x}} - 1} \right)^2}\)
- \({\rm{f}}\left( 2 \right) = 2\,\, \Rightarrow {\rm{a}}{\left( {2 - 1} \right)^2} = 2 \Rightarrow {\rm{a}} = 2\)
- \(\,{\rm{f}}\left( {\rm{x}} \right) = 2{\left( {{\rm{x}} - 1} \right)^2}\,\, \Rightarrow {\rm{f}}\left( 0 \right) + {\rm{f}}\left( 4 \right) = 20\)
- (A) -2 < x < 0
- (B) x < -2 atau x > 0
- (C) 0 < x \( \le \) 2
- (D) x < 0 atau x \( \ge \) 2
- (E) x < 0 atau x \( \ge \) 2
Penyelesaian
\(\begin{array}{l}\frac{{{{\rm{x}}^2} - 3\,{\rm{x}} + 1}}{{{{\rm{x}}^2} + 2\,{\rm{x}}}}\,\,\, \le \frac{{ - 2}}{{{\rm{x}} + 2}}\\\frac{{{{\rm{x}}^2} - {\rm{x}} + 1}}{{{{\rm{x}}^2} + 2\,{\rm{x}}}}\,\,\,\,\, \le 0\\{{\rm{x}}^2} + 2\,{\rm{x}}\,\,\,\, < \,\,\,,\,\,\,\left( {{\rm{x}} + 2} \right) < 0 \to - 2 < {\rm{x}} < 0\end{array}\)
Kunci A
- (A) Rp 70.000,00
- (B) Rp 65.000,00
- (C) Rp 60.000,00
- (D) Rp 55.000,00
- (E) Rp 50.000,00
\(\begin{array}{l}\left. \begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{3}}\,{\rm{x + y + 2}}\,{\rm{z = 39}}{\rm{.000}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{x}} + 2\,{\rm{y}} + 3\,{\rm{z}} = 26.000\end{array} \right|\left. {\begin{array}{*{20}{c}}{{\rm{x}}\,\,3}\\{{\rm{x}}\,\,2}\end{array}} \right\}{\rm{x}} = {\rm{y}} + 5000\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,7\,\,{\rm{x}} - {\rm{y}} = 65.000\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,7\left( {{\rm{y}} + 5000} \right) - {\rm{y}} = 65.000\,\,\, \to {\rm{y}} = 5000\,\,;\,\,{\rm{x}} = 10.000\end{array}\)
Maka 2x+49+5z = 50.000 z = 2000
Kunci E
- (A) 210 milyar
- (B) 205 milyar
- (C) 200 milyar
- (D) 195 milyar
- (E) 190 milyar
Penyelesaian Laju pertumbuhan pengeluaran konstan maka fungsi berbentuk fungsi linier
\(\begin{array}{l}{\textstyle{{{\rm{y}} - 80} \over {2016 - 2016}}} = {\textstyle{{130 - 80} \over {2010 - 2016}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\textstyle{{{\rm{y}} - 80} \over {10}}} = {\textstyle{{50} \over 4}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{y}} = 205\end{array}\)
Kunci B
- (A) 501
- (B) 342
- (C) 177
- (D) -25
- (E) -51
Penyelesaian
Misalkan : x,y \( \in \,b\partial \). Asli
x-y = 36
x = 5y > 5y - y = 36, y = 9, x = 45
Barisan Aritmatika : \({{\rm{U}}_5} = {\rm{y}} = 9\,\,\,\, \to {\rm{a}} + 46 = 9\)
\({{\rm{U}}_5} = {\rm{x}} = 45 \to \underline {{\rm{a}} + {\rm{b}}\,\,\,\,\, = 45} \)
\(\,{{\rm{U}}_{10}} = {\rm{a}} + 9{\rm{b}} = - 51\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{b}} = - 12\,\,;\,\,{\rm{a}} = 57\)
Kunci E
- (A) \(p \Rightarrow \overline r \)
- (B) \(r \Rightarrow \overline p \)
- (C) p v r
- (D) r ^ p
- (E) \(r \Rightarrow p\)
Penyelesaian
p v q ekivalen \(\overline {\rm{P}} \,\, \to \,\,{\rm{q}}\)
\(\overline {\rm{q}} \) ekivalen \(\underline {{\rm{q}}\,\, \to \,\,{\rm{r}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \)
\(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\overline {\rm{P}} \,\, \to \,\,{\rm{r}}\,\,{\rm{ekivalen}}\,\,\,\,\underline {{\rm{P}}\,\,{\rm{v}}\,\,{\rm{r}}} \)
Kunci C
- (A) \(\frac{1}{5}\sqrt 5 \)
- (B) \(\frac{2}{5}\sqrt 5 \)
- (C) \(\frac{1}{2}\sqrt 2 \)
- (D) \(\frac{1}{3}\sqrt 3 \)
- (E) \(\frac{1}{2}\)
- (A) \(\frac{3}{2}\)
- (B) \(\frac{5}{2}\)
- (C) \(\frac{6}{2}\)
- (D) \(\frac{{11}}{2}\)
- (E) \(\frac{{15}}{2}\)
Penyelesaian
\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right)A = \left( {\begin{array}{*{20}{c}}2&3\\0&1\end{array}} \right)\\{\rm{A}} = \frac{1}{2}\,\,\left( {\begin{array}{*{20}{c}}1&{ - 4}\\0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}2&3\\0&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&{ - {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}\\0&1\end{array}} \right)\\{{\rm{A}}^{ - 1}}\left( {\begin{array}{*{20}{c}}1&{ - {\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}\\0&1\end{array}} \right) \to \end{array}\) Jumlah Unsur \({{\rm{A}}^{ - 1}} = \frac{5}{2}\)
Kunci B
- (A) \( - \frac{5}{2}\)
- (B) -2
- (C) -1
- (D) \(\frac{1}{2}\)
- (E) 1
Penyelesaian
- \({\rm{x}} + {\rm{y}}\,\, \ge 5\,\,;\,\,{\rm{x}} + 2{\rm{y}} \le 20\,\,;\,\,{\rm{x}} \ge 0\,\,;\,\,{\rm{y}} \ge 0\)
- (1,4) dan (4,1) terletak pada garis x + y = 5
- fungsi objektif f (x,y) = ax + by berimpit dengan x + y = 5, maka \({\rm{a}} = 1\,\,,{\rm{b}} = 1\,\, \to \frac{{\rm{a}}}{{\rm{b}}} = 1\)
- (A) 27,5%
- (B) 30,0%
- (C) 35,5%
- (D) 40,0%
- (E) 45,0%
Penyelesaian
Kunci D
- (A) 20
- (B) 17
- (C) 14
- (D) 13
- (E) 11
Penyelesaian
Barisan aritmatika
\(\begin{array}{l}{{\rm{a}}_{\rm{1}}},\,\,{{\rm{a}}_2},\,\,{{\rm{a}}_3},\,\,{{\rm{a}}_4},\,\,{{\rm{a}}_5},\,\,{{\rm{a}}_6}\\\left. \begin{array}{l}{{\rm{a}}_{\rm{1}}} + {{\rm{a}}_2} + {{\rm{a}}_3} + {{\rm{a}}_4} + {{\rm{a}}_5} + {{\rm{a}}_6} = 75 \to 6{\rm{a}} + 15{\rm{b}} = 75\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\rm{a}}_2} = 8\,\,\,\, \to \,\,\,\,{\rm{a}}\,\,\, + \,\,\,\,{\rm{b}}\,\,\,\, = 8\end{array} \right|{\rm{x}}6\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,9{\rm{b}} = 27\\{{\rm{a}}_6} = {\rm{a}} + 5{\rm{b}} = 20\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{b}} = 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{a}} = 5\end{array}\)
Kunci A