Soal dan Pembahasan Matematika Dasar SBMPTN 2014 (Kode 613)
Bimbel WIN:Belajar dari bentuk soal yang sudah pernah ditanyakan membuat persiapan menghadapi ujian yang sebenarnya akan menjadi lebih terarah, lebih fokus dan lebih efektif.
Himpunan penyelesaian pertidaksamaan \(\sqrt {{x^2} - 2x} < \sqrt {3x + 6} \) adalah ...
(A) {x|-1 < x < 6}
(B) {x|-2 < x \( \le \) 0 atau x \( \ge \) 2}
(C) {x|x \( \ge \) -2}
(D) {x|-2 \( \le \) x < 0 atau 2 \( \le \) x < 6}
(E) {x|-1 < x \( \le \) 0 atau 2 \( \le \) x < 6}
Pembahasan:
\(\sqrt {{X^2} - 2X} < \sqrt {3X + 6} \)
\(\begin{array}{l}{x^2} - 2x < 3x + 6\\{x^2} - 5x - 6 < 0\\\left( {x - 6} \right)\left( {x + 1} \right) < 0\end{array}\)
Syarat
(i) \(\begin{array}{l}{x^2} - 2x \ge 0\\x.\left( {x - 2} \right) \ge 0\end{array}\)
(ii) \(\begin{array}{l}3x + 6 \ge 0\\x \ge - 2\end{array}\)
\( - 1 < \times \le 0\) atau \(2 \le \times < 6\)
💥Kunci Jawaban: E
💦Soal No.2
💦Soal No.3
Pembahasan:
Barisan aritmatika
\( \Rightarrow {\rm{ }}{{\rm{U}}_4} + {U_5} = 55\)
a + 3b + a + 4b = 55
2a + 7b + = 55 ... (i)
\( \Rightarrow {\rm{ }}{{\rm{U}}_9} - 2{U_2} = 1\)
a + 8b - 2 (a+b) = 1
-a+6b = 1 .... (ii)
Eliminasi pers (1) dan pers (2)
\(2a + 7b = 55\left| {x1} \right|{\rm{ 2a + 7b = 55}}\)
\( - a + 6b = 1\left| {x2} \right|{\rm{ }}\frac{{ - 2a + 12b = 2}}{{19b = 57}} + \)
b = 3
-a+6b=1
-a+18=1
a = 17
\({s_3} = \frac{3}{2}(2a + 2b)\)
\( = \frac{3}{2}(34 + 6)\)
= 60
💥Kunci Jawaban: E
💦Soal No.4
Pembahasan:
Garis \(\mathchar'26\mkern-10mu\lambda :y = 2x + k\)
\({m_p} = f'(x) \to x = 1\)
2 = -2x + p
2 = -2(1) + p
p = 4
\(\begin{array}{l}f\left( x \right) = - {x^2} + 4x + 1\\f\left( 1 \right) = - 1 + 4 + 1\end{array}\)
g = 4
titik singgung (1,4)
y = 2x + k
4 = 2(1) + k
k = 2
y = 2x + 2
💥Kunci Jawaban: D
💦Soal No.5
💦Soal No.6
Pembahasan:
Di ketahui \({x_1}\) dan \({x_2}\) adalah akar - akar
\(\begin{array}{l}PK:{x^2} + 3x + P = 0\\\,\,\,\,\,\,\,\,\, > {x_1} + {x_2} = - 3\\\,\,\,\,\,\,\,\,\, > {x_1}\,\,.\,\,{x_2} = P\end{array}\)
\(\left( {{x_1} + {x_2}} \right),\left( {{x_1}{x_2}} \right),{\left( {{x_1}{x_2}} \right)^2} \to 3\) suku pertama aritmatika
\(2({x_1}{x_2}) = ({x_1} + {x_2}) + {({x_1}{x_2})^2}\)
\(\begin{array}{l}\,\,\,\,\,\,2p = - 3 + {p^2}\\{p^2} - 2p - 3 = 0\\\left( {p - 3} \right)\left( {p + 1} \right) = 0\end{array}\)
p = 3 atau p = -1
\(p = 3 \to {x^2} + 3x + 3 = 0 \to D < 0\) (tidak punya akar real )
\(p = - 1 \to {x^2} + 3x - 1 = 0 \to D < 0\) (memiliki akar real)
maka p = -1 yang memenuhi
💥Kunci Jawaban: B
💦Soal No.7
Pembahasan:
\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}y\\x\end{array}} \right] = {\left[ {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}{\rm{ }}\begin{array}{*{20}{c}}1\\x\end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}}4\\{ - 1}\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}2\\{ - 1{\rm{ }}}\end{array}\begin{array}{*{20}{c}}1\\x\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}y\\x\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\{ - 1}\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{2y + x}\\{ - y + {x^2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4\\{ - 1}\end{array}} \right]\\{\underline {2y + x = 4} _{:2}}\\y + \frac{1}{2}x = 2\\y + \frac{1}{2}x = 2\end{array}\)
💥Kunci Jawaban: D
💦Soal No.8
Pembahasan:
\(\begin{array}{*{20}{c}}{4P}\\{8A}\end{array}\) Peluang terambil 1 asli dan 1 palsu
\(\begin{array}{l} = \frac{{{8^{{c_1}}}x{4^{{c_1}}}}}{{{{12}^{{c_2}}}}}\\ = \begin{array}{*{20}{c}}{\underline {8x4} }\\{\underline {12x4} }\\{2x1}\end{array}\\ = \frac{{8{\rm{ x 4}}}}{{6{\rm{ x 11}}}}\\ = \frac{{16}}{{33}}\end{array}\)
💥Kunci Jawaban: B
💦Soal No.9
Pembahasan:
\(\begin{array}{c}f(x) = \frac{{x + 1}}{{x - 1}}\\{f^{ - 1}}(x) = \frac{{x + 1}}{{x - 1}}\\{f^{ - 1}}(\frac{1}{x}) = \frac{{\frac{1}{x} + 1}}{{\frac{1}{x} - 1}}\\ = \begin{array}{*{20}{c}}{\frac{{1 + x}}{x}}\\{\overline {\frac{{1 - x}}{x}} }\end{array}\\ = \frac{{1 + x}}{{1 - x}}\\ = - \left( {\frac{{x + 1}}{{x - 1}}} \right)\\ = - f(x)\end{array}\)
💥Kunci Jawaban: A
💦Soal No.10
Pembahasan:
PK : \(\begin{array}{c}{x^2} + 3x + 1 = 0\\){x_1} + {x_2} = - 3\\){x_1}\,\,.\,\,{x_2} = 1\end{array}\)
PK (baru) \(:.)\alpha + \beta = 2 + \frac{{{x_2}}}{{{x_1}}} + 2 + \frac{{{x_1}}}{{{x_2}}}\)
\(\begin{array}{c} = 4 + \left( {\frac{{x\begin{array}{*{20}{c}}2\\1\end{array} + x\begin{array}{*{20}{c}}2\\2\end{array}}}{{{x_1}{x_2}}}} \right)\\ = 4 + \left( {\frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}}} \right)\\ = 4\left( {9 - 2} \right)\\ = 11\\.)\alpha \beta = \left( {2 + \frac{{{x_2}}}{{{x_1}}}} \right)\left( {2 + \frac{{{x_1}}}{{{x_2}}}} \right)\\ = 4 + 2\left( {\frac{{{x_2}}}{{{x_1}}} + \frac{{{x_1}}}{{{x_2}}}} \right) + 1\\ = 4 + 2(7) + 1\\ = 19\end{array}\)
PK (baru) \( \Rightarrow {x^2} - 11x + 19 = 0\)
💥Kunci Jawaban: A
💦Soal No.11
Pembahasan:
x = banyak pakaian model A
y = banyak pakaian model B
\(\begin{array}{l}x + 2y \le 40\\1,5x + 0,5y \le 15\\x \ge 0;y \ge 0\end{array}\)
titik potong
x + 2y 40
\(\frac{{6x + 2y = 60}}{{ - 5x = - 20}} - \)
\(\begin{array}{l}x = 4\\4 + 2y = 40{\rm{ }}\left( {4,18} \right)\\y = 18\end{array}\)
Maka : f( x, y) = x + y
f(0,20 ) = 20
f( 10,0 ) = 10
f( 0,0 ) = 0
f( 4,18 ) = 22
max = 22
💥Kunci Jawaban: C
💦Soal No.12
Pembahasan:
\(\begin{array}{*{20}{c}}{2x - y - 1 = 0}\\{4x - y - 5 = 0}\end{array}\left| {\begin{array}{*{20}{c}}{x2}\\{x1}\end{array}} \right|\begin{array}{*{20}{c}}{4x - 2y - 2 = 0}\\{\underline {4x - y - 5 = 0{\rm{ }}{{\rm{ }}_ - }} }\end{array}\)
-y + 3 = 0
y = 3
2x - y -1 = 0
22x - 4 = 0
x = 2
\( \Rightarrow ax - y - 7 = 0\)
2a - 3 - 7 = 0
2a = 10
a = 5
💥Kunci Jawaban: B
💦Soal No.13
Pembahasan:
\(_{\overline x {\rm{ }} = {\rm{ }}\frac{{{{\overline x }_1}.{n_1} + {{\overline x }_2}.{n_2} + {{\overline x }_3}.{n_3} + {{\overline x }_4}.{n_4}}}{{{n_1} + {n_2} + {n_3}}}}\)
\(P\,\,\, = \,\,\,\frac{{\left( {p + 0,1} \right)0,2n + \left( {p - 0,1} \right)0,4n + \left( {p - 0,5} \right)0,1n + \left( {p + q} \right)0,3n}}{n}\)
\(P{\rm{ }} = {\rm{ }}0,2p + 0,02 + 0,4p - 0,04 + 0,01p - 0,05 + 0,3p + 0,3\underline q \)
\(\begin{array}{l}P = p + 0,3\underline q - 0,07\\0,3\underline q = 0,07\\\underline q = \frac{7}{{30}}\end{array}\)
💥Kunci Jawaban: B
💦Soal No.14
Pembahasan:
\(\begin{array}{l}\frac{1}{2} + \left( {^3\log {\rm{ }}8} \right)\left( {^2\log {\rm{ }}3{ + ^4}\log {\rm{ }}5} \right) - {4.^9}\log {\rm{ 45}}\\ = \frac{1}{2}{ + ^3}\log {\rm{ 8}}{{\rm{.}}^2}\log {\rm{ 3}}{{\rm{ + }}^3}\log {\rm{ 8}}{{\rm{.}}^4}\log {\rm{ 5 - 4}}{{\rm{.}}^{{3^2}}}\log {\rm{ 45}}\\ = \frac{1}{2} + {3.^3}\log {\rm{ 3 + }}\frac{3}{2}{.^3}\log {\rm{ 5 - }}\frac{4}{2}{.^3}\log \left( {9x5} \right)\\ = \frac{1}{2} + 3 + \frac{3}{2}{.^3}\log {\rm{ 5 - 2}}\left( {^3\log {\rm{ 9}}{{\rm{ + }}^3}\log {\rm{ 5}}} \right)\\ = 3\frac{1}{2} + \frac{3}{2}{.^3}\log {\rm{ 5 - 4 - 2}}{{\rm{.}}^3}\log {\rm{ 5}}\\ = - \frac{1}{2} - \frac{1}{2}{.^3}\log {\rm{ 5}}\\ = - \left( {\frac{1}{2}{ + ^3}\log \sqrt 5 } \right)\\ = - \left( {^3\log \sqrt 3 { + ^3}\log \sqrt 5 } \right)\\ = { - ^3}\log \sqrt {15} \end{array}\)
💥Kunci Jawaban:
💦Soal No.15
Pembahasan:
\(f\left( x \right) = {a^2}{x^2} - 12x + {c^2}\)
* menyinggu sumbu x di x = \({\raise0.7ex\hbox{$2$} \!\mathord{\left/
{\vphantom {2 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}\) artinya :
(i) f (x) melalui titik \(\left( {\frac{2}{3},0} \right)\)
\(\begin{array}{l}0 = {a^2}{\left( {\frac{2}{3}} \right)^2} - 12\left( {\frac{2}{3}} \right) + {c^2}\\0 = \frac{{4{a^2}}}{9} - 8 + {c^2}\\0 = 4{a^2} - 72 + 9{c^2}\end{array}\)
\(4{a^2} + 9{c^2} = 72\)
(ii) Diskriman f (x) sama dengan nol
\(\begin{array}{c}D = 0\\{b^2} - 4ac = 0\\144 - 4{a^2}{c^2} = 0\\{a^2}{c^2} = 36\\{c^2} = {\raise0.7ex\hbox{${36}$} \!\mathord{\left/
{\vphantom {{36} {{a^2}}}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{${{a^2}}$}}\end{array}\) (Pers 2)
substitusi pers.2 ke pers.1 :
\(cocok\begin{array}{c}4{a^2} + 9\left( {\frac{{36}}{{{a^2}}}} \right) = 72\\4{a^4} + 9.36 = 72{a^2}\\{a^4} + 81 = 18{a^2}\\{a^4} - 18{a^2} + 81 = 0\\\left( {{a^2} - 9} \right)\left( {{a^2} - 9} \right) = 0\\{a^2} = 9\end{array}\)
\(\begin{array}{c}{c^2} = \frac{{36}}{{{a^2}}}\\{c^2} = 4\end{array}\)
\({a^2} - {c^2} = 9 - 4 = 5\)
💥Kunci Jawaban: D