Soal dan Pembahasan Matematika Dasar SBMPTN 2008 (Kode 201)
Bimbel WIN:
- Matematika Dasar -
- A. \(\left( {x + y} \right)\left( {x - y} \right)\)
- B. \( - \left( {x + y} \right)\left( {x - y} \right)\)
- C. \({\left( {x - y} \right)^2}\)
- D. \(x\left( {x - y} \right)\))\
- E. \( - x\left( {x - y} \right)\)
Pembahasan:
\(\begin{array}{l}\frac{{{x^{ - 2}} - {y^{ - 2}}}}{{{{\left( {x\,.\,y} \right)}^2}}} = \left( {\frac{1}{{{x^2}}} - \frac{1}{{{y^2}}}} \right)\,.\,{\left( {x\,.\,y} \right)^2}\\ = \left( {\frac{{{y^2} - {x^2}}}{{{x^2}{y^2}}}} \right)\,.\,\left( {{x^2}{y^2}} \right)\\ = - \left( {x + y} \right)\left( {x - y} \right)\end{array}\)
π₯ Kunci Jawaban: B
- A. 1
- B. 2
- C. 3
- D. 4
- E. 5
Pembahasan:
\(\begin{array}{l}\frac{{\frac{1}{1} - \frac{1}{{\sqrt 2 }}}}{{\frac{1}{2} + \frac{1}{{\sqrt 5 }}}} = \frac{{\sqrt 5 - 2}}{{\sqrt {5 + 2} }}\,\,.\,\,\frac{{\sqrt 5 - 2}}{{\sqrt 5 - 2}}\,\,\, \Rightarrow \,\,\,9 - 4\sqrt 5 = a + b\sqrt 5 \,\,;\\a = 9,\,\,\,\,\,b = - 4\\a + b = 5\end{array}\)
π₯ Kunci Jawaban: E
- A. 7
- B. 8
- C. 9
- D. 10
- E. 11
Pembahasan:
Garis : melalui titik dan dimana a, b, dan c tidak mempunyai persekutuan selain 1
maka \(\frac{{y + 2}}{{2 + 2}} = \frac{{x - 1}}{{ - 5 - 1}} \Rightarrow 4x - 4 = - 64 - 12\) \(\begin{array}{l} \Rightarrow 2x + 3y + 4 = 0\\a + b + c = 2 + 3 + 4 = 9\end{array}\)
π₯ Kunci Jawaban: C
- (A) y = -8x + 16
- (B) y = 8x - 48
- (C) y = -16x + 24
- (D) y = -8x + 48
- (E) y = 16x – 24
Pembahasan:
\(y = 2{x^2} - 16x + 24\)
- Melalui titik potong \(y \to x = 0,\) \(y = 24 \to \) titik singgung (0,24)
- Gradien \({\rm{(}}m{\rm{)}} = y1 = 4x2 - 16 \to m = 16\)
- Persamaan garis singgung \(y - 24 = - 16(x - 0)\)\( \to y = - 16x + 24\)
π₯ Kunci Jawaban: C
- (A) \( - {a^4} + 4{a^2} - 4\)
- (C) \({a^4} - 4{a^2} - 4\)
- (D) \({a^4} + 4{a^2} - 4\)
- (E) \({a^4} + 4{a^2} + 4\)
Pembahasan:
\(\begin{array}{l}x2 - ax + 1 = 0\begin{array}{*{20}{c}}{{ \nearrow ^{{x_1}}}}\\{{ \searrow _{{x_2}}}}\end{array}\\{\rm{ }}{x_1} + {x_2} = a\\{\rm{ }}\,{x_1}\,\,.\,\,{x_2} = 1\\\,x2 + px + q = 0\begin{array}{*{20}{c}}{{ \nearrow ^{\frac{{x_1^3}}{{{x_2}}}}}}\\{{ \searrow _{\frac{{x_2^3}}{{{x_1}}}}}}\end{array}\\\,\,\,\,\,\frac{{x_1^3}}{{{x_2}}} + \frac{{x_2^3}}{{{x_1}}} = - p\\\,\,\,\,\frac{{x_1^3}}{{{x_2}}}\,\,.\,\,\frac{{x_2^3}}{{{x_1}}} = q\\{\rm{maka :}}\\ - p = \frac{{x_1^4 + x_2^4}}{{{x_1}{x_2}}} = {\left[ {\left( {x1 + x2} \right) - 2{x^1}{x^2}} \right]^2} - 2{\left( {{x_1}\,\,.\,\,{x_2}} \right)^2}\\ - p = \frac{{{{\left( {{a^2} - 2\,\,.\,\,1} \right)}^2} - 2{{(1)}^2}}}{1} = {a^4} - 4{a^2} + 2\\ \to p = - {a^4} + 4{a^2} - 2\end{array}\)
π₯ Kunci Jawaban:
- (A) 6
- (B) 12
- (C) 13
- (D) 18
- (E) 27
Pembahasan:
- (A) \((0,\frac{1}{2}\pi )\)
- (B) (0,1)
- (C) \((0,1 - \frac{1}{2}\pi )\)
- (D) \((0,1 + \frac{1}{2}\pi )\)
- (E) \((0,\pi )\)
Pembahasan:
\(y = \sin x + \cos x \to \) disinggung garis dititik absisnya \(\frac{1}{2}\pi \) - gradien garis singgung \(y1 = m = \cos x - \sin x,m = - 1\) - persamaan garis singgung \(y - 1 = - 1\left( {x - \frac{\pi }{2}} \right) \to \) : \(y = - x + 1 + \frac{\pi }{2}\)memotong sumbu y di \(\left( {0,1 + \frac{\pi }{2}} \right)\)
π₯ Kunci Jawaban: D
- (A) \(\frac{1}{2}\)
- (B) \(\frac{3}{4}\)
- (C) \(\frac{9}{{16}}\)
- (D) \(\frac{5}{8}\)
- (E) \(\frac{{11}}{{16}}\)
Pembahasan:
\(\begin{array}{l}\sin \,\,Q + \cos \,\,Q = \frac{1}{2}\,\,\, \Rightarrow \,\,.\,\,{\left( {\sin \,\,Q + \cos \,\,Q} \right)^2} = \frac{1}{4}\\{\rm{ }} \Rightarrow \,\,\,\,\,{\sin ^2}\,\,Q + {\cos ^2}\,\,Q + 2\sin \,\,Q\,\,\cos = \frac{1}{4}\\{\rm{ }} \Rightarrow \,\,\,\,{\rm{ }}2\sin \,\,Q\,\,\,\,\cos \,\,Q = \frac{1}{4} - 1\\{\rm{ }} \Rightarrow \,\,\,\,\,2\sin \,\,Q\,\,\,\,\cos \,\,Q = - \frac{3}{8}\\{\sin ^3}\,\,Q + {\cos ^3}\,\,Q = \left( {\sin \,\,Q + \cos \,\,Q} \right)\left( {{{\sin }^2}\,\,Q - \sin \,\,Q\,\,.\,\,\cos \,\,Q + {{\cos }^2}\,\,Q} \right)\\{\rm{ }}\,\,\,\, = \frac{1}{2}\left( {1 + \frac{3}{8}} \right) = \frac{{11}}{{16}}\end{array}\)
π₯ Kunci Jawaban: E
- (A) 11
- (B) 12
- (C) 13
- (D) 14
- (E) 15
Pembahasan:
\(\begin{array}{l}\sin \,\,Q + \cos \,\,Q = \frac{1}{2}\,\,\, \Rightarrow \,\,.\,\,{\left( {\sin \,\,Q + \cos \,\,Q} \right)^2} = \frac{1}{4}\\{\rm{ }} \Rightarrow \,\,\,\,\,{\sin ^2}\,\,Q + {\cos ^2}\,\,Q + 2\sin \,\,Q\,\,\cos = \frac{1}{4}\\{\rm{ }} \Rightarrow \,\,\,\,{\rm{ }}2\sin \,\,Q\,\,\,\,\cos \,\,Q = \frac{1}{4} - 1\\{\rm{ }} \Rightarrow \,\,\,\,\,2\sin \,\,Q\,\,\,\,\cos \,\,Q = - \frac{3}{8}\\{\sin ^3}\,\,Q + {\cos ^3}\,\,Q = \left( {\sin \,\,Q + \cos \,\,Q} \right)\left( {{{\sin }^2}\,\,Q - \sin \,\,Q\,\,.\,\,\cos \,\,Q + {{\cos }^2}\,\,Q} \right)\\{\rm{ }}\,\,\,\, = \frac{1}{2}\left( {1 + \frac{3}{8}} \right) = \frac{{11}}{{16}}\end{array}\) \(\begin{array}{l}{\rm{Luas }}\Delta {\rm{ }}ABC\, = 40\sqrt 3 \,\,.\,\,BC = 16,\,\,AC = 10\\{\rm{Luas }}\Delta \,ABC = \frac{1}{2}\,\,.\,\,BC\,\,.\,\,AC\,\,.\,\,\sin \,\,C = \frac{1}{2}\,\,.\,\,16\,\,.\,\,10.\,\,\sin \,\,C = 40\sqrt 3 \\{\rm{ }} \Rightarrow \sin \,\,C = \frac{1}{2}\sqrt 3 \,\,\, \to \,\,\,C = 60\\{\rm{ }}AB = \sqrt {{{10}^2} + {{16}^2} - 2\,.\,10\,.\,16\,.\,\cos \,\,60} \\{\rm{ }}\,AB = 14\end{array}\)
π₯ Kunci Jawaban: D
- (A) \(\frac{1}{2}\)
- (B) \(\frac{1}{2}\sqrt 2 \)
- (C) 1
- (D) 0
- (E) -1
Pembahasan:
\(\begin{array}{l}\mathop {Lim}\limits_{x \to \frac{\pi }{4}} \frac{{1 - 2\sin \,x\,\,\cos \,\,x}}{{Sin\,x - \cos \,x}} = \mathop {Lim}\limits_{x \to \frac{\pi }{4}} \frac{{{{(\sin \,\,x - \cos \,\,x)}^2}}}{{\sin \,\,x - \cos \,\,x}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {Lim}\limits_{x \to \frac{\pi }{4}} \,\,\,\sin \,\,x - \cos \,\,x = 0\end{array}\)
π₯ Kunci Jawaban: D
- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) 10
Pembahasan:
\(\mathop {Lim}\limits_{x \to 1} \frac{{3x + {x^{\frac{3}{2}}} - 4}}{{{x^{\frac{1}{2}}} - 1}} = \mathop {Lim}\limits_{x \to 1} \frac{{3 + \frac{3}{2}\sqrt x }}{{\frac{1}{2}\,\,.\,\,\frac{1}{{\sqrt x }}}} = 9\)
π₯ Kunci Jawaban: D
- (A) 54 cm3
- (B) 64 cm3
- (C) 74 cm3
- (D) 84 cm3
- (E) 94 cm3
Pembahasan:
\({V_{\max }} = \frac{{L\sqrt L }}{{6\sqrt 6 }} = \frac{{96\sqrt {96} }}{{6\sqrt 6 }} = 64\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\)
π₯ Kunci Jawaban: B
- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2
Pembahasan:
\(\begin{array}{l}y = (x - 3)\sqrt x \to y = {x^{\frac{3}{2}}} - 3{x^{\frac{1}{2}}}\\{\rm{ }}{y^1} = 0 \Rightarrow \frac{3}{2}\sqrt x - \frac{3}{{2\sqrt x }} = 0 \Rightarrow x = 1\\{\rm{ }}{y_{\min }} = (1 - 3)\,\,\,1 = - 2\end{array}\)
π₯ Kunci Jawaban: A
- (A) \(\frac{{ - 1}}{{{{(\cos x + \sin x)}^2}}}\)
- (B) \(\frac{{ - 2}}{{{{(\cos x + \sin x)}^2}}}\)
- (C) \(\frac{{ - 3}}{{{{(\cos x + \sin x)}^2}}}\)
- (D) \(\frac{{ - 1}}{{{{\cos }^2}x - {{\sin }^2}x}}\)
- (E) \(\frac{{ - 2}}{{{{\cos }^2}x - {{\sin }^2}x}}\)
Pembahasan:
\(y = \frac{{\cos \,x\, - \,\sin \,x}}{{\cos \,x\, + \,\sin \,x}}\)
\({y^1} = \frac{{\left( { - \sin \,x\, - \,\cos \,x} \right)\left( {\cos \,x\, + \,\sin \,x} \right) - \left( {\cos \,x\, - \,\sin \,x} \right)\left( { - \sin \,x\, + \,\cos \,x} \right)}}{{{{\left( {\cos \,x\, + \,\sin \,x} \right)}^2}}}\)
\(y = \frac{u}{v} \Rightarrow y1 = \frac{{{u^1}v - {v^1}u}}{{{v^2}}}\)
\(y1 = \frac{{ - 2}}{{{{\left( {\cos \,x\, + \,\sin \,x} \right)}^2}}}\)
π₯ Kunci Jawaban:
- (A) -4
- (B) -1
- (C) \( - \frac{1}{2}\)
- (D) \(\frac{1}{4}\)
- (E) 2
Pembahasan:
\(\begin{array}{l}\frac{{\sqrt[3]{{{4^{5 - x}}}}}}{8} = \frac{1}{{{2^{2x}} + 1}} \Rightarrow \frac{{{{\left( {{2^2}} \right)}^{\frac{{5 - x}}{3}}}}}{{{2^3}}} = {2^{ - (2x + 1)}}\\{\rm{ }}{{\rm{2}}^{\frac{{10 - 2x}}{3} - 3}} = {2^{ - (2x + 1)}}\\{\rm{ }} \Rightarrow 10 - 2x - 9 = - 6x - 3 \Rightarrow x = - 1\end{array}\)
π₯ Kunci Jawaban: B
- (A) \(\frac{a}{{a + b}}\)
- (B) \[\frac{{a + 2}}{{b + 1}}\
- (C) \(\frac{{a + 2}}{{a(b + 1)}}\)
- (D) \(\frac{{a + 1}}{{b + 2}}\)
- (E) \(\frac{{a + 2}}{{b(a + 1)}}\)
Pembahasan:
\(\begin{array}{l}{}^6\log \,\,98 = \frac{{{}^2\log \,\,98}}{{{}^2\log \,\,6}} = \frac{{{}^2\log \,\,2 + {}^2\log \,\,49}}{{{}^2\log \,\,2 + {}^2\log \,\,3}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{1 + 2\,\,.\,\,2\log 7}}{{1 + 2\log 3}} = \frac{{1 + \frac{2}{a}}}{{1 + b}} = \frac{{a + 2}}{{a(1 + b)}}\end{array}\)
π₯ Kunci Jawaban: C
- (A) 4 kali
- (B) 5 kali
- (C) 7 kali
- (D) 10 kali
- (E) 14 kali
Misal :
uang adi = x sisa Uang adi tiap belanja
=\({\left( {\frac{2}{3}} \right)^n}.x = \frac{{32}}{{243}} \cdot x\) \(\left( {\frac{2}{3}} \right)n = \left( {\frac{2}{3}} \right)5 \Rightarrow n = 5\)
π₯ Kunci Jawaban: B
- (A) \(\frac{1}{2}\)
- (B) \(\frac{1}{3}\)
- (C) \(\frac{2}{3}\)
- (D) 2
- (E) 3
Pembahasan:
\({\rm{rasio}} = \frac{{14p + q - (6p + q)}}{{(6p + q) - (2p + q)}} = 2\)
π₯ Kunci Jawaban: D
- (A) \(^5\log \frac{{{{({b^{n - 1}})}^{n/2}}}}{{{a^n}}}\)
- (B) \(^5\log \frac{{{{({b^n})}^{n/2}}}}{{{a^{n/2}}}}\)
- (C) \(^5\log \frac{{{{({b^{n - 1}})}^{n/2}}}}{{{a^{n/2}}}}\)
- (D) \(^5\log \frac{{{{({b^{n - 1}})}^{n/2}}}}{{{a^{2n}}}}\)
- (E) \(^5\log \frac{{{{({b^n})}^{n/2}}}}{{{a^{2n}}}}\)
Pembahasan:
\(\begin{array}{l}Sn = \frac{n}{2}(2a + (n - 1)b){\rm{ }} \to {\rm{ }}\underline {{\rm{Deret aritmatika}}} \\{}^5\log \,\,\frac{1}{a} + {}^5\log \frac{b}{a} + {}^5\log \frac{{{b^2}}}{a} + \,\,...\,\,,{\rm{beda}} = {}^5\log b\\Sn = \frac{n}{a}\left( {2\,\,.\,\,5\log \,\,{a^{ - 1}} + (n - 1)\,\,{}^5\log b} \right)\\\,\,\,\,\,\,\, = \frac{n}{a}\left( {5\log \frac{{{b^{n - 1}}}}{{{a^n}}}} \right)\\\,\,\,\,\,\,\, = {}^5\log \frac{{\left( {{b^{n - 1}}} \right)\frac{n}{2}}}{{{a^n}}}\end{array}\)
π₯ Kunci Jawaban: A
- (A) -p
- (B) p
- (C) 2p
- (D) -2p
- (E) 1
Pembahasan:
\(\begin{array}{l}{p^2} = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right] = - \,{\rm{I}}\\ - {p^4} + 2{p^3} + 3{p^2} + 4\,{\rm{I}} = - \,{\rm{I}} - 2p - 3\,{\rm{I}} + 4\,{\rm{I}} = - 2p\end{array}\)
π₯ Kunci Jawaban: D
- (A) \(\frac{1}{7}\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 4}&{ - 1}\end{array}} \right)\)
- (B) \(\frac{1}{3}\left( {\begin{array}{*{20}{c}}1&1\\{ - 4}&3\end{array}} \right)\)
- (C) \(\frac{1}{4}\left( {\begin{array}{*{20}{c}}1&1\\{ - 4}&3\end{array}} \right)\)
- (D) \(\frac{1}{4}\left( {\begin{array}{*{20}{c}}1&2\\{ - 1}&3\end{array}} \right)\)
- (E) \(\frac{1}{2}\left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\4&{ - 2}\end{array}} \right)\)
Pembahasan:
\(\begin{array}{l}At = B + x\\\left( {\begin{array}{*{20}{c}}1&{ - 2}\\2&0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 2}&3\end{array}} \right) + x \Rightarrow x = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\4&{ - 3}\end{array}} \right)\\{\rm{ }}\,\, \Rightarrow {x^{ - 1}} = \frac{1}{7}\,\,\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 4}&{ - 1}\end{array}} \right)\end{array}\)
π₯ Kunci Jawaban: A
- (A) \(\frac{5}{{18}}\)
- (B) \(\frac{1}{3}\)
- (C) \(\frac{5}{{12}}\)
- (D) \(\frac{1}{2}\)
- (E) \(\frac{2}{3}\)
Pembahasan:
Misal : Kegiatan A = kegiatan muncul mata dadu kurang dari 6 maka : \(\begin{array}{l}n(A) = 5 + 43 + 2 + 1 = 15\\n(S) = 36 \Rightarrow p(A) = \frac{{15}}{{36}} = \frac{5}{{12}}\end{array}\)
π₯ Kunci Jawaban: C
- (A) 0
- (B) 5
- (C) 10
- (D) 15
- (E) 20
Pembahasan:
\(\begin{array}{l}6 = \frac{{4\,\,.\,\,20 + 5\,\,.\,\,40 + 6\,\,.\,\,70 + 8x\,\, + \,\,10\,\,.\,\,10}}{{20 + 40 + 70 + x + 10}}\\840 + 6x = 800 + 8x \Rightarrow x = 20\end{array}\)
π₯ Kunci Jawaban: E
- (A) 2
- (B) 4
- (C) 6
- (D) 8
- (E) 10
Pembahasan : \(\begin{array}{l}{x_2} - 6x + a = 0\begin{array}{*{20}{c}}{{ \nearrow ^{{x_1}\,\,\, \to {x_1}\, + \,{x_2}\, = \,6}}\,}\\{{ \searrow _{{x_2}\,\,\, \to {x_1}\,\,.\,\,{x_2}\, = \,a}}}\end{array}\\{x_1},\,\,{x_2},\,\,{x_1} + {x_2} \to {\rm{Barisan aritmatika}}\\{x_2} - {x_1} = {x_1} + {x_2} - {x_2} \to {x_2} = 2\,{x_1}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to {x_1} + {x_2} = 6 \to {x_1} = 2,\,\,\,{x_2} = 4\\{x_1}\,\,.\,\,{x_2} = a \to a = 8\end{array}\)
π₯Kunci Jawaban : D
- (A) \({\rm{ - 1 < x < 1}}\)
- (B) \({\rm{4 < x < 6}}\)
- (C) \({\rm{5 < x < 6}}\)
- (D) \({\rm{5}}{\rm{,1 < x < 6}}\)
- (E) \({\rm{5}}{\rm{,1 < x < 15}}\)
Pembahasan :
Deret geometri tak hingga konvergen : \(\begin{array}{l} - 1 < r < i\\ - 1 < Log(x - 5) < 1 \to 0,1x - 5 < 10 \to 5,1 < x < 15\end{array}\)
π₯ Kunci Jawaban : E